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Abstract

Currently, the advantages of composite materials, such as high strength and toughness

to weight ratios, corrosion and fatigue resistance, make these materials very attractive

and desirable to work with, especially in the aerostructure industry. However, composite

material structures are sensitive to the presence of damage such as delamination, which

is one of the most typical failure modes in laminate composites. A delamination may

be induced during the manufacturing process or may be caused by inadvertent impact

damage after manufacturing. The main problem is that most of composite structural

damage is difficult to detect or follow. The lack of accurate and reliable fracture toughness,

fatigue and damage tolerance properties, which enable the evaluation of damage growth

within a composite structure, results in an over-designed structure due to the high safety

margin regulations. In order to better understand the mixed mode I/II fracture (initiation

and propagation) behavior of a carbon/epoxy multi-directional (MD) woven composite

containing an interlaminar delamination between two plain woven plies, with tows in the

0◦/90◦ and +45◦/ − 45◦-directions, a comprehensive investigation has been performed,

involving analytical, numerical and experimental work.

The first term of the asymptotic expansion for the stress and displacement fields in the

neighborhood of the investigated delamination front have been developed analytically by

employing the formalisms of Lekhnitskii (1950) and Stroh (1958). The in-plane stress and

displacement fields were related to the complex in-plane stress intensity factor K = K1+

iK2; the out-of-plane stress and displacement fields were related to the real out-of-plane

stress intensity factor KIII . These expressions are further used in two separate methods,

displacement extrapolation (DE) and the conservative M-integral, for calculation of the

stress intensity factors.

All test specimens are analysed by means of the finite element method (FEM) and theM-

integral and/or the DE method to determine the stress intensity factors; these are used to

obtain the critical interface energy release rate and two phase angles (mode mixities). The

software written for the M-integral and the DE method, as well as the first term of the

asymptotic displacement field, are verified and both methods are validated by performing

numerical analyses on three benchmark problems. Excellent agreement was found by
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comparison of the calculated (M-integral and DE) and exact values of the stress intensity

factors (analytic solution). In addition, solution convergence and path independence were

examined and fulfilled.

Mixed-mode fracture toughness tests are carried out on an MD laminate making use of

the Brazilian disk (BD) specimen, containing a delamination, at various loading angles

in order to obtain a wide range of mode mixities. Employing the experimentally and

numerically obtained results at fracture, a two and three-dimensional failure criterion

are generated. A statistical analysis with a 10% probability of unexpected failure and a

95% confidence is performed, in order to account for scatter in the results. These failure

criteria may be used for safer design purposes for the investigated interface.

Fracture toughness tests for delamination initiation and propagation under quasi-static

loading are carried out making use of three beam-type specimens: double cantilever beam

(DCB), calibrated end-loaded split (C-ELS) and mixed mode end-loaded split (MMELS).

The deformation modes considered are nearly mode I, nearly mode II and one in-plane

mixed mode ratio, respectively. Based upon the experimentally and numerically obtained

results, a fracture toughness resistance GiR-curve is generated, for each kind of beam-type

specimen. In addition, the critical values of the interface energy release rate for initiation

Gic and steady-state propagation Giss are determined.

Quantification of the critical energy release rate Gic values obtained for delamination

initiation in all tested specimens, as a function of the in-plane mode mixity, is presented.

Use of an empirical failure criterion proposed by Benzeggagh and Kenane (1996) for the

beam-type specimens is made. For both specimen configurations (BD and beam-type), it

is found that as ψ̂ → 0, the value of Gic decreases. However, the value of Gic for ψ̂ = 0 is

found to be sensitive to the thickness of the test specimen. Thus, it would appear that

for nearly mode I deformation, the thickness of the structural element in question should

govern the specimen thickness.
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Charalambous et al. (2015a)
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III
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Abbreviation
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ASTM American Society for Testing and Materials
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B-K Benzeggagh and Kenane (1996)

C-ELS calibrated end-loaded split
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CV coefficient of variation
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ISO International Organization for Standardization
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MMELS mixed mode end-loaded split
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RFI resin film infusion

RH relative humidity
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SEM scanning electron microscopy
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STD standard deviation
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Chapter 1

Introduction

The establishment of failure criteria for both static and fatigue loads for composite struc-

tures is of great interest to many manufacturers in various industries, such as biomedical,

sport, automotive and aircraft industries. The knowledge of failure criteria prior to manu-

facturing will contribute to a low cost product with the best performance available. Hence,

industrialists would like to have a full-field method or technique which provides the stress

and displacement fields at every critical location within structures. While designing a

composite structure, first its material system should be determined. This stage is crucial,

since once a material system has been chosen it affects stages from initial design to the

final product. The fact that much effort is being made in order to achieve innovations in

the field of composite materials leads sometimes to confusing outcomes as a result of its

complexity. These innovations may be related to the chemistry involved in developing a

new material system and its constituent equations or may be related to a new analysis

modeling tool or algorithm to predict the material behavior under certain conditions.

Thus, a better understanding of the material structure and its behavior is the first step

in establishing failure criteria.

The well known advantages of composite materials, such as high strength and toughness

to weight ratios, corrosion and fatigue resistance, and a variety of manufacturing pro-

cesses permitting a one-step final structural configuration with all necessary structural

elements integrally attached, make these materials very attractive and desirable to work

with (see Schwartz, 2002; and Garg et al. 2001). However, composite material structures

are sensitive to the presence of damage such as delamination, which may sometimes lead

to sudden catastrophes such as aircraft or space shuttle crashes, ending with loss of human

lives. Damage may be induced during the manufacturing process as a result of improper

molding tool usage, application of insufficient pressure on the preformed structure, ab-

sence of resin, application of a lower or much higher temperature than the resin glass

1
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Figure 1.1: (a) Typical balanced plain weave configuration. (b) Delamination orientation.

temperature during the curing stage, etc. or may be caused by inadvertent impact dam-

age after manufacturing. The main problem is that most of composite structural damage

is barely visible to the human eye and is difficult to detect or follow. The lack of accurate

and reliable fracture toughness, fatigue and damage tolerance properties, which enable

the evaluation of damage growth within a composite structure, results in an over-designed

structure due to the high safety margin regulations.

In this study, one of the most typical failure modes is investigated: the delamination

between two adjacent plies in a composite structure. The delamination is assumed to

be along the interface between a 0◦/90◦ and a +45◦/ − 45◦ balanced plain weave, and

may represent a common design detail within a composite structure used in the civil

aircraft industry. An illustration of a typical balanced plain weave configuration and the

delamination with its orientation are shown in Figs. 1.1a and 1.1b, respectively.

A brief introduction to the field of polymer-fiber composites is given in Section 1.1, where

a description of some of the difficulties raised by the composite structure manufacturing

process are given, as well. The stress and displacement fields near the tip of an interface

crack, which is located between two linear elastic isotopic materials, are described in Sec-

tion 1.2. A literature review of mixed mode fracture toughness measurements is given in

Section 1.3, where examples of various bimaterial interface delaminations within a mul-

tidirectional composite laminate are also described. The aims of this study are described

in Section 1.4.
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1.1 Composite material

A reinforced polymeric material is a composite material usually constructed from high

toughness fibers embedded in a low toughness polymeric matrix. The material properties

of the fiber and matrix, as well as their bonding connections, which exist between the

outer surface of the fiber and the matrix, determine the load carrying capacity of the

composite material. The composite material properties may be tailored to sustain the

predicted loads applied to the entire composite structure. The pre-tailored composite

material properties may be obtained by selecting the desired material for both fibers and

matrix, the volume fraction (the fiber to composite ratio) and the fiber orientation at each

location within the composite structure, and by determining the preferred manufacturing

process. The reinforcing fibers may be made of carbon, polyamide, boron, glass etc.,

whereas the polymeric matrix may be either a thermoplastic or thermosetting resin. The

huge progress within the field of reinforced polymeric materials depends upon historical

events, which the most significant one would be the energy crisis, which occurred in the

early 1970s.

Two major American national programs led by the National Aeronautics and Space Ad-

ministration (NASA), the Aircraft Energy Efficiency (ACEE) program begun in the mid-

1970s followed by the Advanced Composites Technology (ACT) program (Dow and Dex-

ter, 1997) begun in the mid-1980s, aimed to achieve an effective reduction of fuel con-

sumption in commercial and military transport aircraft. Both expensive and ambitious

programs were embarked upon as a result of the oil embargo imposed by OPEC members

between the years 1973 and 1975. The embargo led to a dramatic increase in the price

of petroleum-based fuels, interpreted as a threat by the U.S. government (Bowles, 2010).

The fundamental ACEE program focused mainly on research and development made in

the fields of advanced propulsion systems (Ciepluch et al., 1987), advanced metallic alloys

and composite materials (Sakata and Ostrom, 1978; Blankenship and Teichman, 1982)

and advanced aerodynamics (Bartlett, 1981), all considered as significant parameters af-

fecting the energy consumption of aircraft. The main purpose of the ACEE program was

to achieve energy saving by reducing the total drag on and weight of the aircraft struc-

ture. After the ACEE period was ended, it was concluded that the current composites

may not be applicable in robust primary structures, since their manufacturing process

was overpriced compare to metal primary structures. Furthermore, despite the develop-

ments made in the mechanical properties of composites, it was found that the conventional

laminated structures, made of two-dimensional ply stackups, had poor damage tolerance

capabilities. Hence, such composite structures would not be able to withstand the severe

flight service loads with minimal damage.

The ACT program was prompt to solve two main obstacles regarding composite primary
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Figure 1.2: Several two-dimensional woven fabric configurations.

structures: expensive manufacturing and low damage tolerance. By adopting the textile

industry automated manufacturing methods, dry preformed structures were produced

with internal through-the-thickness reinforcements (Poe et al., 1999), such as braided and

stitched tows. Indeed, the dry preformed structure technology enforced the development

of adequate processes, which enabled optimal resin infiltration while supporting the pre-

cured composite structure, all to ensure the manufacture of a net-shape fully cured part.

The resin transfer molding (RTM) and the resin film infusion (RFI) tooling concepts and

processes, as well as the developments of new epoxy resins, were investigated, monitored,

analytically and numerically modeled and experimentally validated. The new methodol-

ogy, which included simplification of material architecture, material manufacture process

modeling and experimental tests for obtaining macroscopic mechanical properties and de-

sign allowables, was recognized by the federal authorities and set the foundations to the

contemporary standards.

The complicated textile architecture was simplified by assuming it may be treated as a

homogeneous anisotropic media, characterized by its effective mechanical properties, as if

it had an orthotropic or tetragonal material configuration. The effective properties were

mathematically derived as a combination of the mechanical properties of the composite

constituents, and describe relatively well the overall composite structure elastic behavior

(see Shankar and Marrey, 1997). The calculated effective moduli were determined by

performing analytical or numerical modeling and were verified by experimental tests.

A detailed review of models for predicting the effective mechanical properties of textile

composites is presented in Tan et al. (1997).



5

Though the mechanical properties of a composite material depend upon its architecture,

they are also governed by its manufacturing process. The mechanical properties are

highly affected by changes in temperature and heating rate during cure and cool-down

stages (see Weideman et al., 1992; Golestanian and El-Gizawy, 1997), which determine

the obtained chemical and thermal shrinkage and the composite degree of cure (DoC).

Since residual stresses are inevitable, intensive investigations in order to minimize them

have been made (see White and Hahn, 1992; Golestanian and El-Gizawy, 2001), and

currently being made, including improvements in process modeling (see Carlone et al.,

2014), intermediate temperature monitoring and measurement equipment and techniques

(see de Oliveira et al., 2008).

Two-dimensional woven fabrics are still the most commonly used form in composite struc-

ture manufacturing (Khan, 2009) because of their well known advantages, such as good

in-plane properties, good drapability (determined by a combination of several factors,

such as stiffness, flexural rigidity, weight, thickness etc.), highly automated and relatively

inexpensive preform fabrication process and their good ability to cover large areas (Poe et

al., 1999). Several two-dimensional woven fabric configurations, such as plain, satin and

twill weaves, are presented in Fig. 1.2. It should be noted, as well, that unidirectional

lamina continue to be used in industry in applications, such as floor beams (for the Boeing

company commercial aircrafts 777 and 787), where high axial strength and good in-plane

properties are required.

1.2 Stress and displacement fields in the neighbor-

hood of an interface crack tip

According to Williams (1959), in the neighborhood of an interface crack tip located be-

tween two different elastic isotropic materials, the stress and displacement fields behave

as

σ ∝ 1√
r

{
sin(ǫ ln r)

cos(ǫ ln r)

}
, (1.1)

u ∝
√
r

{
sin(ǫ ln r)

cos(ǫ ln r)

}
. (1.2)

The distance from the crack tip is denoted by r, as shown in Fig. 1.1b, and ǫ is the

isotropic bimaterial oscillatory parameter, which depends upon the mechanical properties
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of both materials. Explicitly, ǫ may be written by means of βDun, which is one of the two

Dundurs’ parameters (Dundurs, 1969), as

ǫ =
1

2π
ln

(
1 + βDun
1− βDun

)
, (1.3)

where

βDun =
µ2(1− 2ν1)− µ1(1− 2ν2)

2[µ2(1− ν1) + µ1(1− ν2)]
. (1.4)

The shear moduli are denoted by µk, νk are the Poisson’s ratios and k = 1, 2 represents

the upper and lower materials, respectively.

In the case of a bimaterial interface crack, the in-plane stress components in the vicinity

of the crack tip may be written as

σ
(k)
αβ =

1√
2πr

[
ℜ
(
Kriǫ

)
k
Σ

(1)
αβ(θ, ǫ) + ℑ

(
Kriǫ

)
k
Σ

(2)
αβ(θ, ǫ)

]
, (1.5)

where r and θ are polar coordinates, similar to those shown in Fig. 1.1b, α, β = 1, 2,

i =
√
−1 and k = 1, 2 represents the upper and lower materials, respectively. The in-

plane stress functions kΣ
(1)
αβ and kΣ

(2)
αβ are given in polar coordinates by Rice et al. (1990)

and in Cartesian coordinates by Deng (1993). The in-plane complex stress intensity factor

K is defined by

K = K1 + iK2, (1.6)

where K1 and K2 are not associated with a single deformation mode. Furthermore, if

the applied stress is given in units of N/m2, the obtained units of K are N×m−(3/2+iǫ).

Conversion from one system of units to another will lead to a different ratio between the

real and imaginary parts of K. In order to resolve the complex units, K may be written

as

K̂ = KLiǫ, (1.7)

where L is an arbitrary length parameter. The choice of L depends upon use of the stress

intensity factor and will be discussed later. It may be noted that

∣∣Liǫ
∣∣ = 1, (1.8)

so that

|K| = |K̂|. (1.9)

The in-plane complex stress intensity factor in eq. (1.6) may be presented in a non-

dimensional form as

K̃ =
KLiǫ

σ
√
πL

, (1.10)

where σ is the applied remote stress. The non-dimensional in-plane complex stress inten-

sity factor may be written as

K̃ = |K̃|eiψ̂, (1.11)
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so that the phase angle or mode mixity are found to be

ψ̂ = arctan

[ℑ (KLiǫ)

ℜ (KLiǫ)

]
= arctan

[
σ12
σ22

]∣∣∣∣
θ=0,r=L

. (1.12)

In the case of a three-dimensional problem, where the stress and displacement fields vary

along the crack front, the local in-plane stress components remain the same as given in

eq. (1.5), and the local out-of-plane stress components may be written as

σ
(k)
α3 =

KIII√
2πr

kΣ
(III)
α3 (θ). (1.13)

The out-of-plane stress intensity factor is denoted by KIII , which is solely associated with

the tearing deformation mode, kΣ
(III)
α3 (θ) is the out-of-plane stress function of material k

with α = 1, 2 and may be found in Deng (1993); all other variables are defined as for

eq. (1.5). A ratio exists between the out-of-plane and the in-plane deformations denoted

by a second phase angle φ, which is defined as

φ = arctan

[√
H1

H2

KIII√
K2

1 +K2
2

]
= arctan

[√
H1

H2

σ32√
σ2
22 + σ2

12

]∣∣∣∣∣
θ=0,r=L

. (1.14)

The parameters H1 and H2 depend upon the mechanical properties of both materials

above and below the interface, and may be written as

1

H1
=

1

cosh2 πǫ

(
1

E1

+
1

E2

)
,

1

H2

=
1

4

(
1

µ1

+
1

µ2

)
,

(1.15)

where

1

Ek

=





1− ν2k
Ek
1

Ek

plane strain

generalized plane stress.
(1.16)

The Young’s moduli are denoted by Ek and k = 1, 2 represents the upper and lower

materials, respectively.

At every position along the crack front, the local interface energy release rate Gi is related
to the local stress intensity factors by

Gi =
1

H1

(
K2

1 +K2
2

)
+

1

H2

K2
III , (1.17)

where the subscript i represents interface.

The predicted oscillatory behavior of the stress and displacement fields in the vicinity

of the interface crack tip (see eqs. (1.1) and (1.2)), implying crack face interpenetration,



8

has delayed the development of this research field. In order to resolve this problem,

several models were proposed. Two models made use of three parallel layers of different

homogeneous materials, in which the stress singularity was 1/
√
r (Atkinson, 1977). The

layers were assumed to be perfectly bonded at their interfaces, and the crack was assumed

to be parallel to both interfaces. In the first model, the crack was located within the mid-

layer, meaning it was a crack within a homogeneous media. In the second model, the

crack was located along the interface, between the upper and middle layers. Furthermore,

it was assumed that the mechanical properties of the mid-layer varied through the mid-

layer height, from the upper layer mechanical properties to the lower layer mechanical

properties. Hence, continuity of mechanical properties at the interfaces existed. In that

work, an expression for the energy release rate G as a function of the model thickness was

presented for each model. For both models it was found that for a mid-layer height much

smaller than the height of both outer layers, the expression obtained for G was equal to

that of a crack within a homogenous material; the error was order of the ratio of the

heights of the outer layers.

Another model consisted of a contact zone, in which the interface crack faces were assumed

to be in frictionless contact in a region adjacent to the crack tip (Comninou, 1977, 1978;

and Comninou and Schmueser, 1979). In those studies, which dealt with a finite interface

crack of length 2a within an infinite bimaterial body subjected to tensile (Comninou,

1977), shear (Comninou, 1978) and combined remote stresses (Comninou and Schmueser,

1979), the region in the vicinity of both crack tips was divided into three distinguishable

zones: the zone ahead of the crack tip where continuity of tractions and displacements

exists along the interface; the zone behind the crack tip where crack faces were open

and free of traction; and in between, the contact zone where crack face interpenetration

was prohibited and its length s was derived as part of the solution, while linear elastic

fracture mechanics was assumed. In those investigations, it was found that the first

term of the asymptotic solution depended upon KII and βDun in eq. (1.4). Numerical

results for several values of βDun were presented, as well. Under tensile loading conditions

(Comninou, 1977) the normalized length of the contact zone s/a varied between O(10−4)

to O(10−7) depending on βDun. Under pure shear loading conditions (Comninou, 1978)

for βDun = 0.5, s/a = 1/3 adjacent to one crack tip, whereas at the other tip it was

O(10−7). It should be noted that for smaller values of βDun, the obtained normalized

length of the contact zone decreases at both crack tips.

The work presented by Rice (1988) renewed interest for further investigations. In that

work, it was determined that the oscillatory parameter ǫ in eq. (1.3) may not be neglected,

although it is very small. An estimate of the small scale interpenetration length rc,

measured from the crack tip to the farthest location where crack face interpenetration

is predicted, was presented. If this length is sufficiently small and included within a
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small scale yielding (SSY) zone, linear elastic fracture mechanics may be employed for

predicting the behavior of the stress and displacement fields in the neighborhood of the

crack tip. Hence, both fields may be described by means of the complex stress intensity

factor K.

In a K dominant regime, an interface fracture criterion may be described by means of

the interface energy release rate and two phase angles or by means of the three stress

intensity factors. An example of a three-dimensional energy based criterion is presented

in Banks-Sills et al. (2006), where the critical interface energy release rate Gic was derived
as

Gic = G1c

(
1 + tan2 ψ̂

) (
1 + tan2 φ

)
. (1.18)

The mode-1 critical energy release rate, denoted by G1c, is given by

G1c =
[ℜ(KLiǫ)]2

H1
, (1.19)

where H1 is given in eq. (1.15) for two isotropic materials and the phase angles ψ̂ and φ

are defined in eqs. (1.12) and (1.14), respectively. In carrying out a test, L is chosen to

center the fracture data in the Gic, ψ̂ and φ space. For each data point, the value of G1c

is computed. The average value G1c in eq. (1.19) is calculated from all obtained values of

G1c of all data points.

1.3 Mixed mode fracture toughness testing of lami-

nates

Interlaminar fracture toughness describes the resistance to delamination of a composite

laminate structure by means of a critical strain energy release rate Gc. The delamination

toughness properties are commonly measured via test methods that have received recog-

nition by at least one of the federal authorities across the world. These serve as standard

methods, since their technical procedures and obtained results were found to be relatively

accurate and repeatable, even though a complex process of measured data reduction was

involved. There are several organizations handling composite structure standardization

test methods (O’Brien, 1998), such as the International Organization for Standardization

(ISO), the American Society for Testing and Materials (ASTM) and the European Struc-

tural Integrity Society (ESIS), dominated by industry, academia and government fracture

mechanics experts. Hence, standards may be associated with one or more organizations.

The interlaminar fracture toughness of unidirectional composites is related to the fracture

deformation modes, which are presented in Fig. 1.3. Mode I is shown in Fig. 1.3a, where

the crack faces open perpendicular to crack propagation plane. Mode II is shown in
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Figure 1.3: Fracture deformation modes: (a) mode I - opening, (b) mode II - sliding, (c)

mode III - tearing (see Balzani et al., 2012).

Fig. 1.3b, in which the crack faces slide perpendicular to the crack front. In Fig. 1.3c,

mode III is presented, where the crack faces move parallel to crack front known as the

tearing mode.

Great effort has been and still is being made in order to determine experimentally the

delamination toughness of composite structures under pure or mixed fracture deforma-

tion modes (see O’Brien, 1998; Brunner et al., 2008). Although many test techniques and

specimens have been examined during the last fifteen years, only a few test methods were

approved to serve as standards. Furthermore, although the composite structure archi-

tecture, its constituents and applied in-service loads are complicated in most cases, the

standards are limited to unidirectionally carbon or glass fiber-reinforced polymer matrix

specimens, which are subjected to quasi-static loading conditions. In the three mode I

test methods, ASTM Standard D 5528-13 (2014), ISO 15024 (2011), and the Japanese

Industrial Standard (JIS) K 7086 published in 1993 (Hojo et al., 1995), the double can-

tilever beam (DCB) test configuration is employed. The test specimen consists of an

even number of unidirectional plies oriented in the same direction, in which all fibers are

aligned parallel to the specimen length. A non-adhesive thin film, which is recommended

to be less than 13 µm thick, is placed at the specimen midplane and serves as an initial

delamination. The specimen is loaded normal to its thickness through piano hinges or

load blocks, which are attached to the specimen at its delaminated upper and lower ends.

Using displacement control, stable delamination propagation is obtained. While conduct-

ing a DCB test, the instantaneous applied load and load-point displacement are recorded

in order to provide a load-displacement curve. During the test, the delamination length

is determined visually via a traveling optical microscope. Once the specimen compliance

has been calibrated, the mode I interlaminar fracture toughness of the composite material

being investigated may be determined.
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It should be noted, that while testing multidirectional laminates, the obtained delami-

nation resistance values may represent only delamination initiation properties (see ISO

15024:2001(E) Sec. B.1; O’Brien, 1998; Brunner et al., 2008). In such cases, delamination

growth may involve phenomena such as crack branching and/or deviations from the ini-

tial central plane containing the non-adhesive film insert. It may be mentioned that the

delamination initiation value GIc determined via the ASTM D 5528-13 (2014) and ISO

15024 (2011) standards is based upon an artificial initial delamination. It was found to

be almost the same as that obtained for pre-cracked specimens (see Davies et al., 1998,

p. 354). Although the effect of the artificial delamination is considered negligible, the

initiation value GIc is based upon a pre-cracked specimen.

There are currently three international standards available for mode II testing. In two of

them, the end notch flexure (ENF) specimen is employed; whereas in the third standard,

the calibrated end-loaded split (C-ELS) specimen is used. In the ASTM standard D 7905

(2014), which was developed by Subcommittee D30.06 on Interlaminar Properties (David-

son, 2014), and in the JIS K 7086 established in March 1993 (Tanaka et al., 1995), in which

the mode I test method via a DCB specimen is also included, the three-point bending

ENF test configuration is employed. The ENF specimen is identical to the DCB specimen,

although their test fixtures, constraints and applied loads differ. On the ENF specimen

mid-span, a vertical load is applied to produce a sliding shear displacement between the

upper and lower delamination faces. Generally unstable delamination growth is obtained

for short delamination lengths, so that only initiation values may be determined. A ratio

of delamination length a to specimen half-span L greater than 0.7 will result in stable

delamination propagation (Davies et al., 1998). On the other hand, stable growth may be

obtained by means of machine feedback control of the current relative shear displacement,

which is measured between the delaminated ends of the upper and lower delamination

faces (see O’Brien, 1998; Brunner et al., 2008). In this way, both delamination initiation

and growth resistance properties may be determined. As with the DCB specimen, under

stabilized delamination growth conditions, the instantaneous applied load and load-point

displacement are recorded in order to provide a load-displacement curve. During the test,

the delamination length is determined visually via a traveling optical microscope. Once

the specimen compliance has been calibrated, the mode II interlaminar fracture toughness

of the composite material being investigated may be determined.

Since the delamination growth via an ENF test is usually unstable, several other test

configurations have been examined (4ENF - four-point bending, end notch flexure, ELS

- end loaded split, etc.) in order to characterize mode II fracture behavior (Brunner

et al., 2008). The great advantage of those configurations is that stable delamination

propagation may be obtained for a normalized delamination length a/L < 0.7. However,

the influence of other test parameters require evaluation. It was found that the ENF
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test configuration was less sensitive to roller diameter, specimen shortening, friction and

fixture compliance, despite the complicated procedure and special equipment needed in

the case of ratios a/L < 0.7, to assure stable delamination propagation.

The C-ELS test configuration is suggested in the ISO 15114 (2014) standard. The C-ELS

test specimen also consists of an even number of unidirectional plies, in which fibers are

aligned parallel to the specimen length. A non-adhesive thin film, which is recommended

to be between 10 µm and 13 µm thick, is placed at the specimen midplane and serves as

an initial delamination. The specimen is loaded normal to its thickness through a load

block, which is attached to the specimen at its lower delaminated end. Its other end is

constrained by means of a clamping fixture, so that free horizontal sliding is allowed but

rotation and vertical movement are prohibited. While carrying out a C-ELS test, the

experimental data recording procedure is done similarly to that of an ENF test. Once the

specimen compliance has been calibrated and a clamping correction evaluated, the mode

II interlaminar fracture toughness of the composite material being investigated may be

determined.

It may be pointed out that in order to determine the delamination initiation value GIIc,
it is recommended by the ISO 15114 (2014) standard to use a pre-cracked specimen, in

which the specimen containing an artificial delamination is loaded until its delamination is

slightly extended (see Davies et al., 1998). If a mode II unstable delamination propagation

occurs while performing the pre-cracking procedure, a mode I pre-cracking procedure may

be employed. The values obtained after specimen pre-cracking were found to be lower than

those obtained for a specimen containing only the non-adhesive thin film. Furthermore,

mode I pre-cracking may lead to lower mode II initiation values (see Davies et al., 1998,

p. 354).

There is currently one international standard for the mixed mode I/II test method, which

has been widely used for failure criteria acquisition (see Mollón et al., 2010). In the

ASTM standard D 6671-13 (2014), the mixed mode bending (MMB) test configuration

is employed. The MMB test specimen is similar to the DCB specimen (see ASTM D

6671-13, 2014). Furthermore, the testing system is a simple superposition of the DCB

(pure mode I) and the ENF (pure mode II) tests, so that every combination of mode

mixity may be obtained (Reeder and Crews, 1990). The test specimen within the MMB

test apparatus, is shown in Fig. 1.4. Several significant MMB test parameters, which

are defined in the ASTM standard D 6671-13 (2014), are also presented in Fig. 1.4.

The weight of the lever and attached apparatus are denoted by Pg, P is the applied

load, cg is the lever length to the center of gravity, a is the delamination length, h is

the half-thickness of the test specimen, L is the half-span length of the specimen and

c is the lever length of the MMB test apparatus. The specimen is loaded via the test

apparatus, which is subjected to a single vertical load P (point E in Fig. 1.4). The use
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Figure 1.4: MMB test configuration (see ASTM standard D 6671-13, 2014).

of a linearly variable displacement transducer (LVDT) as an external device indicating

the instantaneous load-point displacement is optional according to the ASTM standard

D 6671-13 (2014). When an external displacement gage or transducer is employed, the

laminate bending modulus and the calculated delamination resistance are independent of

the loading system compliance (see ASTM D 6671-13, 2014).

The load P at point E causes a normal load at the piano hinges or load blocks (point A

in Fig. 1.4), combined with a vertical load acting on the upper surface of the specimen at

point C in Fig. 1.4. Thus, both delamination face opening and sliding may be obtained.

The mixed mode ratio applied to the MMB specimen is determined by the position of the

vertical load introduced by the loading lever. The applied load P acting on the loading

lever and its reaction forces, which are derived from satisfying force and moment equations

of equilibrium on the loading lever, are presented in Fig. 1.5a. The consequent resultant

forces applied to the MMB specimen and their reaction forces are shown in Fig. 1.5b.

These forces may be thought of as a simple superposition of the mode I (DCB) and mode

II (ENF) specimens, presented in Figs. 1.5c and 1.5d, respectively. The variety of mixed

mode ratios is easily achieved by changing the lever length c of the test apparatus.

As with the DCB specimen, under stabilized delamination growth conditions, the instan-

taneous applied load and load-point displacement (point E in Fig. 1.4) are recorded in

order to provide a load-displacement curve. During the test, the delamination length is

determined visually via a traveling optical microscope. Once the specimen compliance

has been calibrated, the mixed mode interlaminar fracture toughness of the composite

material being investigated may be determined for the examined mixed mode ratio. It

should be mentioned that elevation of the mode II deformation component in the MMB

test results in unstable delamination growth (see Brunner et al., 2008).
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Figure 1.5: Loads applied to (a) loading lever, and (b) MMB specimen. The MMB

specimen may be described by superposition of the (c) DCB, and (d) ENF specimens (see

Crews and Reeder, 1988).

Peng et al. (2012) employed the DCB and the MMB test methods for measuring the fa-

tigue delamination growth of multidirectional (MD) CFRP laminate composites, made of

T700/Qy811 (carbon/bismaleimide) prepregs, at different mixed mode ratios GII/G of 0,

0.25, 0.5 and 0.75. The ply stacking sequence of (+45◦/− 45◦/0◦6)s//(−45◦/+ 45◦/0◦6)s
was used for the MD laminate composite plate, in which a +45◦//−45◦ delamination was

artificially induced. The layup was designed to avoid coupling between bending and twist-

ing deformation, as well as to achieve the same flexural modulus in all specimen laminate

segments (upper sublaminate, lower sublaminate and intact laminate). One hundred and

eighty millimeter long specimens with a width b of 25 mm and a nominal thickness 2h of

4.16 mm were machined to their final dimensions from an MD laminate composite plate.

The test specimen design allowed installation of a modified Brandt (1998) hinge at the

upper and lower sublaminate ends of the specimen. Each sublaminate end of the spec-

imen was confined within the fastener box of the modified hinge with tightened screws.

It should be noted that a Brandt (1998) hinge type was employed to reduce eccentricity

effects caused by an attached load block or piano hinge, which may be significant for a

specimen with a short delamination. Its ”load application point” is vertically positioned

next to the curvature line of the upper sublaminate end. Use of the Brandt hinge saves
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Figure 1.6: Illustration of testing configurations employed by Peng et al. (2012): (a) DCB
and (b) MMB.

time as compared to a piano hinge or load blocks. The DCB and MMB test configura-

tions, which were employed by Peng et al. (2012), are illustrated in Figs. 1.6a and 1.6b,

respectively. Also, the modified Brandt (1998) hinge used for applying the load to the

upper and lower sublaminate ends of the specimens may be seen in Figs. 1.6a and 1.6b.

In Peng et al. (2012), both quasi-static and fatigue tests were carried out. Some details

about those quasi-static tests are given in Table 1.1. Based upon the quasi-static test

results, it was found that both initiation and propagation values of the fracture toughness

increased with mode mixity. For each mode mixity, a GR-curve was plotted from quasi-

static experimental data. A linear fit was made to each of the mode mixity plots. It

was found that within the normalized delamination length range of 1.4 < a/b < 2.0,

the behavior of the investigated interface may be characterized by a linear relationship

between the mixed mode fracture toughness and the delamination length.

The mixed-mode end-loaded split (MMELS) test method, which is also may be called the

fixed-ratio mixed-mode (FRMM) test method (Kinloch et al., 1993; Blanco et al., 2004;

Table 1.1: Some details about specimen testing that were performed by Peng et al. (2012).

test type DCB test set-up MMB test set-up

static displacement rate of 0.5 mm/min displacement rate of 0.1 mm/min

N/A at certain intervals the applied displacement was held

for 10 min until delamination propagation stopped

and an equilibrium position was reached, so

that a single lower Gc value was measured
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Figure 1.7: Fixed-ratio mixed-mode (FRMM) test configuration (see Kinloch et al., 1993).

Szekrényes and Uj, 2004), where its beam-type specimen loading configuration is shown

schematically in Fig. 1.7, was employed by ESIS and was explored in several round robin

tests, in which suggested test methods and procedures are usually examined prior to their

approval as standard test methods. The great advantage of the MMELS test method is

that its UD laminate composite beam type specimen and test fixture are identical to those

of the C-ELS test method, so that delamination resistance properties may be determined

for both pure mode II and a specific ratio of mode mixity.

Szekrényes and Uj (2004) employed the single leg bending (SLB) and the mixed-mode

end-loaded split (MMELS) test methods for measuring the mixed mode interlaminar

fracture toughness of UD glass/polyester laminate composites. The MMELS and the SLB

test configurations are illustrated in Figs. 1.7 and 1.8, respectively. Twenty millimeter

wide beam-type specimens with a nominal thickness of 6 mm were machined to their

final dimensions from a UD laminate composite plate, which contained 14 UD plies. An

artificial initial delamination thickness was set to 40 µm, which was introduced by means

of a nylon insert placed at the laminate midplane. It should be pointed out that the

thickness of the non-adhesive thin film is recommended to be between 10 µm and 13 µm

according to standardized guidelines in ISO 15114 (2014). In both test set-ups, the SLB

and the MMELS, which differ in the applied load direction, load application position and

Figure 1.8: Mixed-mode single-leg bending (SLB) test configuration (see Szekrényes and

Uj, 2004).
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specimen constraints, the mode mixity was set to GI/GII = 4/3. Delamination initiation

values were obtained by means of FEM analyses and experimental tests. A set of analytical

expressions was developed for characterizing the beam-type behavior of both specimen

configurations for a ”symmetric” specimen (with upper and lower arms being the same

thickness). To this end, use of linear beam theory and the Winkler elastic foundation

model. With the latter, the specimen is assumed to be constructed from two linear

beams which are connected by linear springs along the zone where the specimen is intact.

In this investigation, delamination initiation values were obtained from the SLB and the

MMELS quasi-static tests, which were performed in displacement control. In both test

configurations, linear load-displacement curves were obtained until fracture occurred. For

each test configuration, the characteristic compliance C versus delamination length a

curve was established by means of the compliance calibration method, in which specimen

compliance may be written as

C = C0 + ka3. (1.20)

The parameters C0 and k are the coefficients of the line, which was obtained by applying

a least square fit to the test results. It may be pointed out that the compliance of the

MMELS test configuration was found to be larger than that of the SLB test configura-

tion. This is as a result of the relatively large displacement (deflection) of the MMELS

test specimens. Nevertheless, the dependence of the delamination initiation values upon

delamination length was found to be similar with a mode mixity of 4/3. Also, it may be

noted that the curve obtained between the mixed mode energy release rate Gc at fracture
and the delamination length a from the SLB specimen was found to be in good agrement

with the curve predicted by the beam model developed by Szekrényes and Uj (2004). As

for the MMELS test method, despite higher mixed mode delamination initiation values

(obtained test results), a similar trend was found to exist between the experimental data

mixed mode energy release rate Gc at fracture and the corresponding beam model mixed

mode energy release rate predictions. Since in both test configurations, similar experi-

mental data based values for steady-state mixed mode energy release rate (GI/IIss) were

obtained for delamination lengths longer than 60 mm, it may be concluded that the beam

model proposed by Szekrényes and Uj (2004) is insufficient for cases of large specimen

arm deflection.

In the work carried out by Albertsen et al. (1995), the fracture toughness for different

deformation modes was examined, as well as the influence of the fiber surface treatment

upon the fracture toughness values at initiation and propagation. Albertsen et al. (1995)

employed the mixed-mode flexure (MMF) and the cracked-lap-shear (CLS) test methods

for measuring the mixed mode interlaminar fracture toughness of UD carbon/epoxy lam-

inate composites. The MMF and the CLS test configurations are illustrated in Figs. 1.9a

and 1.9b, respectively. The MMF configuration is similar to the ENF test configuration,
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(a) (b)

Figure 1.9: (a) Mixed-mode flexure (MMF) test configuration, and (b) cracked-lap-shear

(CLS) test configuration (see Albertsen et al., 1995).

which is used for measuring the mode II fracture toughness. Since the lower arm of the

specimen was cut as illustrated in Fig. 1.9a, and the delamination tip was aligned midway,

between the loading roller and the left outer support, the load applied to the specimen was

transferred only to the specimen upper arm resulting in a dominant mode I deformation.

In this way, a ratio of GI/GII = 1.33 was obtained between the modes I and II energy

release rates. The CLS test configuration, which is similar to a unidirectional tensile test

configuration, employs a specimen with a stepped thickness in which a delamination is

introduced through the specimen as illustrated in Fig. 1.9b. The obtained mixed-mode

ratio depends upon the specimen thicknesses on each side of the transition region. Since in

Albertsen et al. (1995) one side of the CLS specimen was two times thicker than the other,

a ratio of GI/GII = 0.25 was obtained, indicating the dominance of mode II deformation.

It may be noted that several data points for delamination resistance were obtained for

each of the CLS test specimens. However, large scatter in the measurements was found,

especially for increasing delamination length. Hence, characterization of fracture behavior

for propagation was unavailable.

The Arcan specimen and test fixture, which were first introduced by Arcan et al. (1978)

and are shown in Fig. 1.10, produce a uniform two-dimensional stress state within the

examined significant section AB, located along the narrowest region of the test specimen

between its two notches. It was prompted to serve as a simple test method to measure and

determine the shear moduli of fiber reinforced materials (FRM). By changing the loading

angle α, which is presented in Fig. 1.10a and varies within the range of −45◦ ≤ α ≤ 45◦,

various two-dimensional stress states (from pure shear when α = 0◦ up to any arbitrary

combination of normal principal stresses) may be achieved. In that work, experimentally

obtained shear moduli for aluminum and FRM specimens were presented. While each

specimen was loaded, strain measurements were performed by means of both strain gages

and photoelastic methods, to assess the existence of a uniform two-dimensional stress
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Figure 1.10: (a) Arcan circular test fixture and specimen with the significant section AB.

(b) Arcan test specimen within the fixture. (c) Load setup of the Arcan fixture with an

FRM specimen (see Arcan et al., 1978).

state within the significant section AB. The shear moduli measured while employing the

Arcan test specimen were relatively close to values obtained by means of other common,

but relatively complicated, test methods, such as the thin cylinder pure shear test. It

should be noted that in the case of an FRM specimen, the central part of the original

aluminum sample was cut out and an FRM specimen was glued to the aluminum grips.

Four supporting tabs along the glue lines were also attached (see Figs. 1.10b and 1.10c),

to ensure proper load transfer between the loaded grips and the FRM specimen.

Hung and Liechti (1997) employed the Arcan specimen and test fixture to determine the

shear moduli of a unidirectional AS4/PEEK laminated plate. Prior to conducting tests,

a preliminary optimization analysis was performed by means of finite element method to

obtain the radii of the specimen notches at points A and B in Fig. 1.10a. A uniform

strain field within the section was found for a notch radius of 2.38 mm. Specimens

with different fiber orientation were produced from the same plate. While each specimen

was tested, the distribution of strains within the significant zone AB was obtained by

correlating the in-plane displacements, which were measured via Moiré interferometry,

with the instantaneous applied load while α = 0◦. Also, the shear strain was measured by

a strain-gage mounted within section AB at its mid-height. Deviations from uniformity

along section AB were found near the tip of the notches in cases where the specimen fibers

were oriented perpendicular to the notch-to-notch line (see Fig. 1.10a), implying further
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optimization of the notch radius should have been performed. It may be noted that in

several tests, non-linear effects were observed and were caused by the adhesion/clamping

constraints existing between the specimen and the grips.

In order to resolve some of the problems which arose, as described in the work of Hung

and Liechti (1997), several modifications were proposed. In the investigation performed

by Yen et al. (1988), the adhesive requirements were excluded and a smooth load transfer

was established. A 3.2 mm deep trapezoidal cutout was machined in each half of the

stainless-steel fixture, so that a specimen up to 6.4 mm thick could be confined within

the modified Arcan fixture. Each of the butterfly specimen sides was fastened to its grip

by a line of 3 bolts.

In the study performed by El-Hajjar and Haj-Ali (2004), the adhesive requirements were

also excluded. The modified Arcan fixture was assembled from four similar parts, where

the front pair were aligned parallel to the rear pair. Each side of the butterfly specimen

was confined between its two part grip and was fastened to its grip by two lines of 3 sleeve

bolts. Hence, a two lines double shear lap-joint mechanism prevented eccentricity effects

in each specimen side and a smooth load transfer was obtained. In that configuration, the

load was applied to the four part fixture by clevis pins, to minimize out-of-plane forces

and moments, while the range of test specimen thicknesses was extended. Specimens of

12.2 mm thick, which were machined from a pultruded fiber reinforced polymeric (FRP)

plate made of E-glass/polyester, were examined in order to measure the non-linear stress-

strain shear response. Shear moduli at axial and transverse roving orientations, as well as

the material strength envelope, which was experimentally obtained by employing several

biaxial loading conditions, were presented. While each specimen was tested, the sum of

the in-plane normal stresses (first stress invariant) or strains throughout the specimen

surface was measured by means of an infrared thermographic stress analysis technique.

Also, the values of the shear and normal strains were calculated from the readings of a

strain-gage rosette, which was mounted within section AB at its mid-height.

Heydari et al. (2011) have employed both experimental and numerical methods to deter-

mine the mixed mode fracture toughness of a laminate woven carbon-polyester composite.

Ten millimeter thick, laminate specimens containing a pre through-the-thickness edge-

delamination were machined to their final butterfly shape from a 350×50×26 mm3 lam-

inate composite plate. The composite plate was hand layered with 130 carbon-polyester

woven plies, each 0.2 mm thick, all oriented in the same direction. Hence, a stress singular-

ity of 1/
√
r was obtained in the vicinity of the delamination tip. The initial delamination

length a was set to 15 mm and it was located between layers 65 and 66. Also, the direction

of the delamination coincided with the 0◦− direction of the weave. For each specimen,

the height of section AB (see Fig. 1.10), denoted as w, was set to 30 mm. Thus, an initial

delamination length ratio a/w = 0.5 was obtained. Prior to testing, a typical butterfly
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shaped specimen was assembled by gluing each side of the inner composite specimen to

its outer aluminum frame, in which a suitable inner cutout was already machined. The

butterfly shaped assembly was fastened to the modified Arcan test fixture in a way sim-

ilar to that described in Yen et al. (1988). The initial delamination was located along

section AB. Tests were carried out under several loading conditions, in which the loading

angle (see Fig. 1.10) α was changed to obtain different fracture mode mixities (from pure

opening mode α = 90◦ up to pure shearing mode α = 0◦). Thus, for each mixed mode

ratio, the critical fracture load Pc was obtained from the load-displacement curve in a

test. The critical stress intensity factors for each mode mixity were calculated from

KIc =
Pc
√
πac

wt
fI

(ac
w

)

KIIc =
Pc
√
πac

wt
fII

(ac
w

)
,

(1.21)

where t represents specimen thickness and ac represents the delamination length at frac-

ture. The normalized geometric factors fI

( a
w

)
and fII

( a
w

)
refer to KI and KII , re-

spectively. Their fourth order polynomial expressions were determined by means of finite

element analyses of both the modified Arcan test fixture and the investigated specimen

for each loading angle. It was found that for the interlaminar fracture toughness of the

investigated material KIIc > KIc. Also, it was observed that the shear mode fracture

became dominant for loading angle values α less than 15◦.

In an investigation performed by Taher et al. (2012), a new modified Arcan fixture was

proposed to determine the mechanical properties of polymer foam materials. By changing

the configuration of the rigs, compressive loads along with shear loads may be applied to

a test specimen.

The Brazilian disk (BD) test method enables determination of delamination or crack ini-

tiation properties of a specimen containing an artificial delamination or pre-crack under

various mixed mode ratios. In Fig. 1.11, an example of two investigated BD test speci-

mens used to determine the fracture toughness of a bimaterial interface crack, is shown.

It may be pointed out, that only one specimen and test fixture are required to attain

all mode mixities. The specimen is loaded directly by an applied load P , through a stiff

loading frame. Hence, no additional adhesives and/or fasteners are required. Further-

more, the values obtained by this method are independent of specimen and test machine

compliances. A test specimen may be rotated within the loading frame by a loading angle

ω, which may vary within the range of −15◦ ≤ ω ≤ 15◦ to avoid contact and friction

effects.

Atkinson et al. (1982) investigated the BD test specimen, which was made from a ho-

mogeneous elastic isotropic material, to determine its fracture properties under mixed
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Figure 1.11: Brazilian disk specimen with an interface crack between two isotropic homo-

geneous materials: (a) glass/epoxy pair investigated by Banks-Sills et al. (1999), (b) two

ceramic clays - K-142/K-144 pair investigated by Banks-Sills et al. (2000) (see Banks-Sills,

2015).

mode loading conditions. In that study, explicit expressions for the stress intensity fac-

tors at the crack tips were developed for different crack lengths and loading angles. Those

expressions were verified experimentally for mode I and mode II. It was found that the

crack tended to close when the value of the loading angle reached 20◦, which meant a

fracture deformation of pure mode II at the crack tip was obtained. Explicit expressions

to account for contact and/or friction phenomena near the crack tips were developed and

presented, as well.

In the work of Banks-Sills et al. (1999) and Banks-Sills et al. (2000), methodologies for

measuring the two-dimensional composite bimaterial interface fracture properties via a

BD test specimen were developed. In both investigations, the interface crack was be-

tween two isotropic homogeneous materials and a plane-strain stress state was assumed.

Hence, out-of-plane deformations were excluded (KIII = 0). Both mechanical and thermal

loadings were characterized, separately, by two-dimensional FE analyses. Some charac-

teristic parameters of those investigations, where the nominal specimen radius was set to

R = 20 mm, are shown in Table 1.2.

In both studies, mechanical FE analyses were performed for several loading conditions,

in which the loading angle ω (see Fig. 1.11) was changed to obtain different fracture

mode mixities. For each crack tip, fourth order polynomial expressions of the mechanical

normalized stress intensity factors, K̃
(f)
1 (a/R) and K̃

(f)
2 (a/R), were determined by means

of the mechanical M-integral, which was first introduced by Chen and Shield (1977)

for cracks within an isotropic media and was extended for interface cracks between two
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Table 1.2: Some characteristic parameters of bimaterial interface crack investigations
performed via a BD specimen (see Banks-Sills, 2015).

bimaterial interface oscillatory loading angle half crack length to specimen arbitrary length

param. ǫ ω specimen radius a/R thickness t (mm) param. L (µm)

glass/epoxy -0.0881 −10◦ ≤ ω ≤ 13◦ 0.45 ≤
a

R
≤ 0.57 7.79 ≤ t ≤ 7.92 100

Banks-Sills et al. (1999)

ceramic clays K-142/K-144 -0.00563 −15◦ ≤ ω ≤ 15◦ 0.27 ≤
a

R
≤ 0.32 9.23 ≤ t ≤ 10.71 600

Banks-Sills et al. (2000)

AS4/3502 UD 0◦/90◦ -0.03627 −10◦ ≤ ω ≤ 10◦ 0.36 ≤
a

R
≤ 0.43 7.82 ≤ t ≤ 8.20 100

Banks-Sills et al. (2005)

AS4/3502 UD +45◦/− 45◦ 0.000615 2◦ ≤ ω ≤ 13◦
a

R
∼ 0.38 7.94 ≤ t ≤ 8.17 200

Banks-Sills et al. (2006)

isotropic materials as a line integral by Wang and Yau (1981). Fourth order polynomial

expressions of the residual thermal normalized stress intensity factors, K̃
(r)
1 (a/R) and

K̃
(r)
2 (a/R), which are related to the change in specimen temperature (between room

temperature during a test and the curing temperature during specimen manufacture),

were determined by means of the weight function method and FE analysis. It should

be noted, that the obtained normalized expressions depended upon the BD specimen

geometry and its constituent material properties. Furthermore, the effect of contact

between the crack faces was examined by means of a FE analysis; negligible contact

near the crack tip was found for the tip at which propagation occurred. Hence, frictional

effects were not accounted for.

Tests were carried out for different values of ω, so that both the critical fracture load Pc

and the half crack length ac were obtained. The critical mechanical and thermal complex

stress intensity factors for each test were calculated from

K(f) =
Pc
√
πac

2πRtaciǫ
K̃(f)

(ac
R

)
,

K(r) =
σ(r)√πac
aciǫ

K̃(r)
(ac
R

)
,

(1.22)

where σ(r) represents the residual thermal stress caused by the mismatch in the mechanical

and thermal properties between the two materials. For each mixed mode ratio, the total

complex stress intensity factors K(T ) were obtained by superposing the mechanically and

thermally calculated stress intensity factors, meaning

K(T ) = K(f) +K(r). (1.23)
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Figure 1.12: Brazilian disk specimen with an interface delamination between two different

fiber orientated transversely isotropic composite layers: (a) 0◦/90◦ pair investigated by

Banks-Sills et al. (2005) (laminate lay-up [0◦/90◦/0◦]), (b) 0◦/90◦ pair investigated by

Banks-Sills et al. (2005) (laminate lay-up [±45◦/0◦/90◦/0◦/± 45◦]), (c) +45◦/− 45◦ pair

investigated by Banks-Sills et al. (2006) (laminate lay-up [±45◦/[0◦/+ 45◦/− 45◦/0◦]S/±
45◦]).

In both investigations, the critical interface fracture properties were determined and pre-

sented by means of the critical interface energy release rate Gic and the phase angle ψ̂,

which are given in eqs. (1.17) and (1.12), respectively. Recall that it was assumed that

KIII = φ = 0. The value of the arbitrary length parameter L in eq. (1.7) used to cen-

ter the computed critical interface energy release rate data in each investigation is also

shown in Table 1.2. It may be pointed out that those values were chosen to be within

the K−dominant region of each investigated bimaterial interface crack and to obtain the

best curve fit.

Following Banks-Sills et al. (1999) and Banks-Sills et al. (2000), Banks-Sills et al. (2005)

developed a methodology for measuring the two-dimensional laminate composite interface

delamination properties via a BD test specimen. In that study, an interface delamination

was located between two transversely isotropic unidirectional composite plies fabricated

from AS4/3502 (graphite/epoxy). The upper ply contained reinforcing fibers oriented in

the 0◦− direction; whereas, the lower ply contained fibers oriented in the 90◦− direction.

The composite laminate 0◦− direction coincided with the X1− axis; the coordinate sys-

tem is shown in Fig 1.1b. Homogenization of ply material properties according to its

constituents was performed, so that each laminate fiber direction (0◦ or 90◦) was treated

as a homogeneous anisotropic media with its corresponding effective material properties.

Plane-strain conditions were assumed, so that out-of-plane deformation was excluded, i.e,
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KIII = 0. Prior to testing, the first terms of the asymptotic stress and displacement fields

were developed by Banks-Sills and Boniface (2000). Those expressions were used as the

auxiliary displacement field in the M-integral. Use of the FE method and the M-integral

allowed extraction of the complex stress intensity factors for this interface.

Two BD specimen configurations, which are shown in Figs. 1.12a and 1.12b, were consid-

ered in Banks-Sills et al. (2005). The 90◦− direction ply in both configurations contained

intralaminar cracks, caused by the mismatch in the mechanical and thermal properties

between two adjacent plies (between the inner 90◦− direction ply and the two outer

0◦− direction plies) during the cool-down stage. The pattern of intralaminar cracks was

found to be unique within each specimen, even for specimens of the same configuration.

Hence, FE models were prepared for each specimen in order to correctly calculate the

complex stress intensity factors. Some characteristic parameters of that investigation,

where the nominal specimen radius was set to R = 20 mm, are also shown in Table 1.2.

Tests were carried out for different values of ω (see Figs. 1.12a and 1.12b), so that both

the critical fracture load Pc and the delamination length 2ac were obtained. The critical

mechanical complex stress intensity factor K(f) of each specimen was calculated by means

of the FE method and a mechanical M-integral. The residual thermal complex stress in-

tensity factor K(r) of each specimen was calculated by means of the FE method and a

conservative thermal M-integral, which was extended for thermal loads by Banks-Sills

and Dolev (2004). For each mixed mode ratio, the total complex stress intensity factor

was obtained by superposing the mechanically and thermally calculated stress intensity

factors, as defined in eq. (1.23). A fracture criterion for the investigated interface delam-

ination was determined using the critical interface energy release rate Gic and the phase

angle ψ̂, which are given in eqs. (1.17) and (1.12), respectively; (recall KIII = φ = 0). The

value of the arbitrary length parameter L used to center the computed critical interface

energy release rate data is also shown in Table 1.2.

In the work of Banks-Sills et al. (2006), a methodology for measuring the three-dimensional

laminate composite interface delamination properties via a BD test specimen was devel-

oped. The investigated interface delamination was located between two unidirectional

composite plies fabricated from AS4/3502 (graphite/epoxy). The upper ply contained

reinforcing fibers oriented in the +45◦− direction; whereas, the lower ply contained fibers

oriented in the −45◦− direction. Both laminate fiber directions were with respect to the

X1− axis in the X2 = 0 plane; the coordinate system is shown in Fig 1.1b. Homoge-

nization of ply material properties according to its constituents was performed, so that

effective material properties of a ply were determined according to its fiber direction co-

ordinate system. The first terms of the asymptotic stress and displacement fields were

developed based on the assumption of plane deformation as prescribed by the Stroh (1958)

formalism (see Appendix B). In the FE analyses, fine subdivisions along the specimen
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Figure 1.13: Schematic view of the asymmetric cut-ply (ACP) specimen (see Charalam-
bous et al., 2015a).

thickness (X3− axis) were assumed, so that within each volumetric segment (X1, X2,∆X3)

the assumption of plane deformation was fulfilled. The expressions for the displacement

field were used as the auxiliary solution in theM-integrals. The M-integral was extended

for three-dimensional problems for both mechanical (see Freed and Banks-Sills, 2005) and

thermal loads (see Banks-Sills et al., 2006). Use of the FE method and a three-dimensional

M-integral allowed extraction of the complex stress intensity factors for the investigated

interface. The BD specimen configuration, which is shown in Fig. 1.12c, was considered

in Banks-Sills et al. (2006). Some characteristic parameters of that investigation, where

the nominal specimen radius was set to R = 20 mm, are also shown in Table 1.2.

Tests were carried out for different values of ω (see Figs. 1.12c), so that both the critical

fracture load Pc and the delamination length 2ac were obtained. The mechanical complex

stress intensity factor K(f) of each specimen was calculated by means of the FE method

and a three-dimensional mechanical M-integral. The residual thermal complex stress

intensity factor K(r) of the specimens was calculated by means of the FE method and a

thermal three-dimensional M-integral, for a given temperature change. For each mixed

mode ratio, the total complex stress intensity factors was obtained by superposing the

mechanically and thermally calculated stress intensity factors, as defined in eq. (1.23).

Values of the critical interface energy release rate Gic and both phase angles ψ̂ and φ,

which are given in eqs. (1.17), (1.12) and (1.14), respectively, were determined leading to

a failure surface. The value of the arbitrary length parameter L in eq. (1.7) used to center

the computed critical interface energy release rate data in that investigation is also shown

in Table 1.2.

Charalambous et al. (2015a) employed the asymmetric cut-ply (ACP) specimen and an

adjusted four-point bend (FPB) test fixture for measuring the mixed mode interlaminar

fracture toughness and fatigue delamination growth rate of a UD CFRP composite, which

was made of IM7/8552 (carbon/epoxy). This method is based upon the Santa-Barbara

specimen and the FPB test configuration presented in the work of Charalambides et
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(a) (b)

Figure 1.14: ACP specimen testing: (a) adjusted FPB test fixture and test specimen;
(b) loading configuration (see Charalambous et al., 2015a).

al. (1989), in which it was demonstrated that a steady-state energy release rate Gss is

obtained when an interface crack is positioned within the constant moment region. It

should be noted that the steady-state energy release rate Gss is the value of the energy

release rate G which is independent of crack length. In addition, since the obtained values

were found to be independent of specimen and testing machine compliances, unlike other

test methods such as the MMB test method mentioned earlier, reduction procedures of

experimental data are simplified. Furthermore, when G reaches Gss, the delamination

length has no influence on G. Thus, the continuous detection of delamination tip (or

delamination propagation) via optical means becomes irrelevant, so that such a test may

be performed under extreme environmental conditions. However, each mode mixity will

involve manufacture of another composite plate.

The investigated ACP specimen is shown schematically in Fig. 1.13. It was prepared by

gluing 2.45 mm thick aluminum end-tabs on the upper and lower surfaces of the composite

strip ends. The specimen in its loading fixture is presented in Fig. 1.14a; a schematic

loading configuration, in which the overall applied load P is symmetrically applied on

specimen end-tabs, is shown in Fig. 1.14b. The symbols in Fig. 1.14b are defined in

Table 1.3. During the test, the ACP specimen tabbed ends are loaded normal to their

thickness through the rigid rollers of the adjusted FPB test fixture (see Fig. 1.14a).

The applied force Q, which is given by

Q =
P

2 cosβ
, (1.24)

as well as the frictional forces which maintain specimen stability during test performance,

and the formed moment arms, denoted by tT and de, where

de = (D + tT ) tanβ − dx/ cos β, (1.25)
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(a) (b)

Figure 1.15: Loaded ACP specimen: (a) large end-tab rotation β, applied contact forces
Q, µQ, and moment arms tT , de; (b) deformed configuration of the loaded ACP specimen
(see Charalambous et al., 2015a).

are shown in Fig. 1.15a, in which one tabbed end of the ACP specimen is presented.

Both, ACP specimen and FPB test fixture, are symmetric, so that the obtained specimen

deformation, which is presented in Fig. 1.15b, is symmetric too. Additional symbols in

Fig. 1.15 are given in Table 1.3.

Fifteen millimeter wide strips were machined from a 300×300×1.25 mm3 UD CFRP

composite plate, which was fabricated from two sublaminates. Each sublaminate was hand

layered with 5 continuous carbon-epoxy UD plies, each 0.125 mm thick, all oriented in

the same direction. Both sublaminates were laid down and vacuum de-bulked, separately.

The second sublaminate was cut in half by a sharp blade, perpendicular to the fiber

direction. A non-adhesive thin film (12.7 µm thick) was placed over the first sublaminate,

so that an initial delamination 20 mm long was formed while the second sublaminate

was placed on the top of them; mid-surfaces of sublaminates and film were co-linearly

aligned; the delamination front was perpendicular to the fiber direction. The pre-cured

plate was then vacuum de-bulked. A caul plate was used above the composite plate while

it was autoclave-cured to avoid residual thermal stresses. Prior to testing, each of the

ACP specimens was loaded in tension using displacement control until the first load drop

was observed in order to fracture the resin joint, that was formed during the cure process,

along the cut-plies; verification of a valid initial delamination front was performed by

means of C-scan inspections.

The loaded ACP specimen delamination deformation modes may be described as a com-

bination of delamination face opening and sliding modes, in a way similar to the one used

in the case of the MMB specimen (see Crews and Reeder, 1988). It should be noted

that the interlaminar delamination toughness mode partitioning is based upon the global
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Table 1.3: Some characteristic parameters of the ACP specimen (see Charalambous et
al., 2015a).

label description

B specimen width
t thickness of specimen gauge section
2L length of specimen gauge section
2a delamination length
χ number of cut plies to total number of UD plies ratio, 0< χ <1
tT total thickness of specimen tabbed area
LT length of specimen tabbed area
D rollers diameter at end tabs
dx distance between roller centers at tabbed area, dx > D + tT
P testing machine overall load applied to the rollers, measured by testing machine load cell
Q normal force transferred to specimen end-tabs by the rollers
β rigid rotation of specimen end-tabs, β = [0;π2 )
µ Coulomb coefficient of friction
µQ frictional tangential forces between rollers and end-tabs
de distance between rollers’ normal forces at tabbed area
M overall bending moment acting on specimen gauge section
c testing machine cross-head displacement
s specimen’s curvilinear abscissa
θ∗ rotation angle at delamination tip

C1, C2 coordinates of the roller/tab contact points with respect to the center of the support (lower) roller
S1, S2 coordinates of the intersection points between the lines normal to each roller at the contact point

and the mid-through-thickness plane of the end-tabs

(loading) method, in which the obtained energy release rate depends upon specimen load

application configuration rather than delamination tip local deformation (see Kinloch et

al., 1993). Furthermore, based upon the case study investigated within the recent work

of Conroy et al. (2015), use of the global partitioning approach was suggested for cases

where carbon/epoxy material systems are investigated. Although only laminate composite

material specimens made of UD reinforced fibers oriented perpendicular to delamination

front were investigated by Conroy et al. (2015), some insights presented in that work

might be applicable for specimens made of MD laminates. Thus, it may be assumed that

for beam-like specimens the global and the local solutions of the mixed mode partitioning

approach the same value as the bending stiffnesses of specimen sublaminates approach

each other.

The ACP specimen delamination mode partition is illustrated in Fig. 1.16. Determination

of the loading mode mixity presented in the study of Charalambous et al. (2015a) is suited

to laminate and sublaminates of the same flexural modulus. The energy release rate

expressions may be extended for the general case where the flexural modulus of laminate

and sublaminates is not the same.

Referring to Williams (1988) and Charalambous et al. (2015a), the ACP specimen may

be treated as an Euler-Bernoulli beam. Next to the delamination tip, the change of the
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Figure 1.16: Delamination applied load mode partitioning for the ACP specimen:
(a) mixed mode, (b) mode I, and (c) mode II (see Charalambous et al., 2015a).

elastic potential energy ∆U is equal to the difference between the external work performed

by the applied moment and the strain energy (see Williams, 1988). Hence, this change

caused by an incremental delamination extension ∆a may be obtained to be

∆U =
M2

2(EI)Tot

[
(EI)Tot
(EI)Low

− 1

]
∆a, (1.26)

where the bending stiffness of the intact composite laminate and the lower sublaminate

are denoted by (EI)Tot and (EI)Low, respectively, and the overall bending moment is

denoted by M . It should be noted that the second term in eq. (1.26) represents the

external work of the applied bending moment; since no moment is applied on the upper

sublaminate, the change in the strain energy is related only to the lower sublaminate (see

Fig. 1.16a).

The expression EI refers to the equivalent bending stiffness, which depends upon the

flexural modulus and the second moment of area Izz of all plies within the laminate

segment being analyzed. A schematic view of the equivalent cross-section of sublaminate

i for i = Up, Low is shown in Fig. 1.17, in which a local coordinate system is located

at the equivalent cross-section centroid; B and hi represent the width and the height of

sublaminate i, respectively. Since all laminate segments have the same flexural modulus

Figure 1.17: Schematic view of the ACP specimen sublaminate equivalent cross-section.
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E, the bending stiffness of each laminate segment is explicitly given as

(EI)Up
∣∣
identical plies lay−up

= E · IUp = E · Bχ
3t3

12
,

(EI)Low
∣∣
identical plies lay−up

= E · ILow = E · B(1− χ)3t3

12
,

(EI)Tot
∣∣
identical plies lay−up

= E · ITot = E · Bt
3

12
,

(1.27)

where χ is the ratio of the number of cut plies to total number of plies and t refers to the

total thickness of the intact composite segment (see Fig. 1.16a). Thus, from eq. (1.26),

the expression for the total energy release rate may be written as

G = lim
∆a→0

1

B

∆U

∆a
;

G =
M2

2BEITot

[
ITot
ILow

− 1

]
.

(1.28)

Referring to Fig. 1.16b, pure mode I is obtained when MI is applied to both sublaminates

in opposite directions; whereas, pure mode II in Fig. 1.16c is obtained when the curvature

of both sublaminates is the same. An identical sublaminate curvature in the vicinity of

the delamination tip may be written as

ψMII

(EI)Up
=

MII

(EI)Low
, (1.29)

so that the ratio of the upper sublaminate equivalent bending stiffness to the lower sub-

laminate equivalent bending stiffness (see Fig. 1.16c), denoted by ψ, may be written as

ψ =
(EI)Up
(EI)Low

. (1.30)

In eq. (1.30), (EI)Up is the equivalent bending stiffness of the upper sublaminate. Ac-

counting for laminate segments of the same flexural modulus E (substituting eqs. (1.27)1

and (1.27)2 into eq. (1.30)), leads to

ψ =
χ3

(1− χ)3
. (1.31)

Using Fig. 1.16, the moment equilibrium of the upper sublaminate and the lower sublam-

inate, which are given by

Upper sublaminate: 0
∣∣
Fig. 1.16a

= −MI

∣∣
Fig. 1.16b

+ ψMII

∣∣
Fig. 1.16c

Lower sublaminate: M
∣∣
Fig. 1.16a

=MI

∣∣
Fig. 1.16b

+MII

∣∣
Fig. 1.16c

(1.32)



32

respectively, must be fulfilled. Also, the moment equilibrium in Figs. 1.16b (mode I)

and 1.16c (mode II), which are given by

0
∣∣
Fig. 1.16b

= −MI

∣∣
Fig. 1.16b

+MI

∣∣
Fig. 1.16b

M
∣∣
Fig. 1.16c

= ψMII

∣∣
Fig. 1.16c

+MII

∣∣
Fig. 1.16c

(1.33)

respectively, must be fulfilled too. Thus, from eq. (1.33)2,

MII =
M

(1 + ψ)
, (1.34)

and from eqs. (1.32)2 and (1.34),

MI =
ψM

(1 + ψ)
. (1.35)

Referring to Williams (1988), the change of the elastic potential energy ∆U j for j =

mode I, mode II, which is associated with each delamination deformation mode, may be

written as

∆U j =
1

2(EI)Tot

[
M2

Lowj(EI)Tot
(EI)Low

+
M2

Upj
(EI)Tot

(EI)Up
− (MLowj +MUpj)

2

]
∆a, (1.36)

where the total change of the elastic potential energy is given by ∆U = ∆Umode I +

∆Umode II, as presented in eq. (1.26). One may obtain eq. (1.26) with the aid of eqs. (1.30),

(1.34) and (1.35). Substitution of the proper laminate segment bending moments for each

delamination deformation mode, which are presented in eq. (1.32), into eq. (1.36), results

in

∆Umode I =
1

2(EI)Tot

[
M2

I (EI)Tot
(EI)Low

+
M2

I (EI)Tot
(EI)Up

]
∆a,

∆Umode II =
1

2(EI)Tot

[
M2

II(EI)Tot
(EI)Low

+
ψ2M2

II(EI)Tot
(EI)Up

− (MII + ψMII)
2

]
∆a.

(1.37)

Referring to Williams (1988) and Charalambous et al. (2015a), the specimen composite

strip lay-up consists of plies of identical properties (same thickness, material properties

and orientation). Substituting eqs. (1.37) into eq. (1.28)1, the components of the total

energy release rate associated with each delamination deformation mode may be written

as

GI =
MI

2

2BEITot

[
ITot
ILow

+
ITot
IUp

]
,

GII =
(1 + ψ)2MII

2

2BEITot

[
ITot

(1 + ψ)2ILow
+

ψ2ITot

(1 + ψ)2IUp
− 1

]
.

(1.38)
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The components of the energy release rate associated with each delamination deformation

mode written as a function of the overall applied bending moment M may be obtained

by substituting the appropriate deformation mode moment expression given in eqs. (1.34)

and (1.35) into eq. (1.38), as well as use of eqs. (1.27)1, (1.27)3 and (1.31), results in

GI =
ψ2M2

2BEITotχ3(1 + ψ)
,

GII =
M2

2BEITot

[
ψ

χ3(1 + ψ)
− 1

]
.

(1.39)

In eqs. (1.39), the bending stiffness of the composite intact strip segment is denoted

by EITot. The expression for the overall bending moment M , which is based upon a

kinematic analysis of the ACP specimen including large end-tab rotations performed by

Charalambous et al. (2015a), as well as other expressions may be found in Charalambous

et al. (2015a).

It should be recalled, that the total energy release rate is given by

G = GI + GII . (1.40)

Using the expression for GII in eq. (1.39)2 and substituting eqs. (1.39)1 and (1.39)2 into

eq. (1.40), the mode mixity of the ACP specimen may be expressed solely by means of χ,

as presented in the work of Charalambous et al. (2015a), in which

φ
∣∣
identical plies lay−up

=
GII
G =

3(1− χ)4

(1− 3χ+ 3χ2)(3− 3χ+ χ2)
. (1.41)

In Charalambous et al. (2015a), in which the mixed mode ratio was set to 0.43, quasi-

static tests were carried out with precracked specimens, as well as specimens which were

not precracked. All UD CFRP laminate composite specimens were made of IM7/8552

(carbon/epoxy). For both delamination types, an elastic response was observed in the

curve of the overall bending moment M per specimen width versus the applied testing

machine cross-head displacement until the delamination initiation point. The maximum

overall bending moment was measured. The results were verified by means of FE analyses,

in which the delamination tip behavior was characterized by a coupled, linear softening-

like cohesive zone model. The numerical results were verified from experiments found

in the literature by means of the MMB test method. Excellent agreement was found

between the MMB values (Allegri et al., 2013) for the same material and the ACP obtained

delamination initiation values. It should be pointed out, that the obtained FEA results

supported the analytical expressions developed for the predicted large rotation occurring

at the rigid end-tabs of the specimen.
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Charalambous et al. (2015b) employed the ACP specimen and the FPB test fixture

for measuring the mixed mode interlaminar fracture toughness and fatigue delamination

growth rate of a UD CFRP composite. Again, the material studied was composed of

IM7/8552 (carbon/epoxy). Several temperatures, which represent the operating tem-

peratures of composite structures in aeronautical applications were used; these included

-50 ◦C, 20 ◦C, 50 ◦C and 80 ◦C. As in Charalambous et al. (2015a), the mixed mode

ratio was set to 0.43. The obtained experimental data was based upon tests carried out

on specimens which were not precracked.

In Charalambous et al. (2015b), the quasi-static tests were carried out in displacement

control with a constant cross-head displacement rate of 1 mm/min and an upper bound

for the applied cross-head displacement of 10 mm; both specimen and test fixture were

housed in an environmental chamber. For all examined temperatures, an elastic response

was observed in the curve of the overall bending moment per specimen width versus

the applied testing machine cross-head displacement until the delamination initiation

point. As before, the maximum overall bending moment was measured. Also, the fracture

surfaces of all quasi-static test specimens were analysed by means of scanning electron

microscopy (SEM). The specimens which were tested in the temperature range of -50 ◦C to

50 ◦C showed a similar elastic response, as well as similar delamination initiation value.

Furthermore, their fracture surfaces were found to be similar, according to the SEM

analyses. This implies that within the temperature range of -50 ◦C to 50 ◦C, the rise

in matrix ductility was ”balanced” by the accompanied fiber-matrix interfacial strength

reduction. At 80 ◦C, higher delamination initiation values were obtained as a result of a

significant rise in matrix ductility, which was indicated by the presence of matrix plastic

deformation (evident by shear cusps in the SEM examinations) on the fracture surface.

Nevertheless, SEM analyses of fracture surfaces of the quasi-static test specimens for all

temperatures examined showed that a significant amount of matrix material was still

attached to the fibers. Thus, it was concluded that the dominant failure mechanism was

a cohesive failure of the matrix.

1.4 Aims of this study

In this study, one of the most typical failure modes is investigated: the delamination

between two adjacent plies in a composite structure. The delamination is assumed to be

along the interface between a 0◦/90◦ and a +45◦/ − 45◦ balanced plain weave, and may

represent a common design detail within a composite structure used in the civil aircraft

industry. The woven multidirectional composite is fabricated from a prepreg containing

carbon fibers in an epoxy matrix (G0814/913). An illustration of a typical balanced
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plain weave and the delamination with its orientation are shown in Figs. 1.1a and 1.1b,

respectively.

The main goals of this study are: (1) determination of the stress intensity factors and

the energy release rate and phase angles for an interlaminar delamination in the investi-

gated MD laminate composite material, which may be subjected to mixed mode loading

conditions (mechanical and/or thermal residual stresses), by employing analytical and nu-

merical methods; (2) measurement of the three-dimensional laminate composite interface

delamination properties (fracture toughness) via the Brazilian disk specimen, in which a

range of mode mixities is applied to the same specimen configuration; (3) development of

a delamination initiation failure criterion (fracture under static load); (4) measurement

of the interlaminar fracture toughness: delamination initiation and propagation under

quasi-static loading by means of the DCB, C-ELS and the MMELS specimens, in which

the specimen is subjected to nearly pure mode I, nearly pure mode II and mixed mode I/II

deformations, respectively; and (5) comparison of the fracture toughness results which are

obtained by means of the BD specimens to those obtained by means of the beam-type

specimens. By achieving these goals, design allowables for delamination initiation and

propagation fracture toughness will be determined to meet both regulation demands and

manufacturer needs (reliable low cost and easy to maintain composite structures).



Chapter 2

First Term of The Asymptotic

Solution for an Interface

Delamination

Failure criteria for an interface delamination are usually based on the critical interface

energy release rate, Gic and phase angles, ψ̂ and φ or on the stress intensity factors, K1, K2

and KIII as described in Section 1.2. In order to define a failure criterion, the first term

of the asymptotic stress and displacement fields must be determined in the neighborhood

of a delamination front. The development of these fields is very similar to the work

carried out by Ting (1996), Banks-Sills and Boniface (2000), Freed and Banks-Sills (2005)

and Rogel and Banks-Sills (2010). In his book, Ting (1996) describes the formalisms of

Lekhnitskii (1950) and Stroh (1958). Both formalisms, independently, may be used to

develop the stress function and displacement fields within an anisotropic elastic material,

under the assumption that the three-dimensional fields depend solely on the two in-plane

coordinates, say x1 and x2, of the media. The Lekhnitskii (1950) formalism is based on the

stress expressions of an anisotropic elastic material, whereas the Stroh (1958) formalism is

based on the displacement expressions of an anisotropic elastic material. Both formalisms

of Lekhnitskii (1950) and Stroh (1958) are briefly summarized in Appendices A and B,

respectively. A combination of those two formalisms leads to a closed form solution for

the asymptotic stress and displacement fields. Barnett and Kirchner (1997) showed the

equivalence between the Lekhnitskii (1950) sextic equation and the Stroh (1958) sextic

equation.

36
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2.1 Description of the plain-weave composite mate-

rial properties

In order to develop the asymptotic stress and displacement fields in the vicinity of the

delamination front explicitly, it is necessary to first define the mechanical and thermal

properties of the materials. Hence, they are presented in this section. Furthermore,

all of the relevant explicit expressions of the matrices involved in the development of

the asymptotic solution for an interface delamination between two tetragonal anisotropic

elastic materials are presented, as well. As noted in Section 1.2, in this investigation the

bimaterial interface is between a 0◦/90◦ and a +45◦/ − 45◦ balanced plain weave (see

Fig. 1.1b).

Stroh eigenvectors Ak and Bk (see Appendix B) depend upon the elastic compliance

components s
(k)
αβ of each material (for α, β = 1, · · · , 6) where k = 1, 2 represent the upper

and lower materials, respectively (see the definition of contracted notation in Appendix A).

Using the coordinate system shown in Fig. 1.1b and applying the symmetry which exists

in the case of a tetragonal anisotropic elastic material, one may obtain their general form

as

s(k) =




s
(k)
11 s

(k)
12 s

(k)
13 0 0 0

s
(k)
22 s

(k)
12 0 0 0

s
(k)
11 0 0 0

s
(k)
44 0 0

sym s
(k)
55 0

s
(k)
44




. (2.1)

The components of s(1) for the upper material are given by

s
(1)
11 =

1

E11

s
(1)
12 = − ν12

E11

s
(1)
13 = − ν13

E11

s
(1)
22 =

1

E22

s
(1)
44 =

1

G23

s
(1)
55 =

1

G13

(2.2)

where Eii are the Young’s moduli in the xi-direction (for i = 1, 2, 3), no summation

implied. The Poisson’s ratios are given by νij and Gij are the shear moduli (for i, j =
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1, 2, 3). The relation between the Young’s moduli and the Poisson’s ratios is given by

νij
Eii

=
νji
Ejj

, (2.3)

no summation implied. Both upper and lower materials are made of the same woven

composite; hence, the compliance matrix of the lower material may be obtained by rotating

s(1) by 45◦ about the x2-axis. The expressions for the lower material s(2) are found as (see

Fig. 1.1b)

s
(2)
11 =

1− ν13
2E11

+
1

4G13

s
(2)
12 = − ν12

E11

s
(2)
13 =

1− ν13
2E11

− 1

4G13

s
(2)
22 =

1

E22

s
(2)
44 =

1

G23

s
(2)
55 =

2(1 + ν13)

E11
.

(2.4)

A detailed explanation about the transformation of both stiffness and compliance matrices

may be found in Ting (1996, pp. 53-56).

The Stroh eigenvectors may be expressed by means of the reduced compliance matrix

components, s
′(k)
αβ , which are given in eq. (A-8). Based on this relation, the reduced

compliance matrix of the upper and lower materials may be written as

s′(k) =




s
′(k)
11 s

′(k)
12 0 0 0

s
′(k)
22 0 0 0

s
′(k)
66 0 0

sym s
′(k)
44 0

s
′(k)
55




. (2.5)
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For the upper material, the components of s′(1) are given by

s
′(1)
11 =

1

E11
(1− ν213)

s
′(1)
12 = − ν12

E11
(1 + ν13)

s
′(1)
22 =

E11 −E22ν
2
12

E11E22

s
′(1)
66 = s′44

(1)
=

1

G23

s
′(1)
55 =

1

G13
;

(2.6)

whereas for the lower material, the components of s′(2) are given by

s
′(2)
11 =

2(1− ν13)

E11 + 2G13(1− ν13)

s
′(2)
12 = − 2ν12

E11 + 2G13(1− ν13)

s
′(2)
22 =

1

E22

− 4G13ν
2
12

E11[E11 + 2G13(1− ν13)]

s
′(2)
66 = s′44

(2)
=

1

G23

s
′(2)
55 =

2(1 + ν13)

E11

.

(2.7)

Some of the material properties of the 0◦/90◦ plain weave are based on tests performed

following acceptable standard methods in Israel Aerospace Industries (IAI) laboratories.

A complete set of the needed material properties was obtained via the High Fidelity Gen-

eralized Method of Cells (HFGMC), described in detail in Aboudi (2004). This method

allows homogenization of the material properties of the constituents within one ply or

within a stackup of several different plies. Applying this method results in all the effective

material properties needed to characterize a complex structure. The material properties

of the plain woven plies with yarn in the 0◦/90◦-directions and the +45◦/−45◦-directions

are given in Banks-Sills et al. (2013) and Ishbir (2014) and are presented in Tables 2.1

and 2.2, where αii are the thermal expansion coefficients in the xi-direction (for i = 1, 2, 3),

no summation implied. By using these mechanical properties, the components of both

compliance matrices s
′(k)
αβ may be calculated. Thus, their values are presented in Table 2.3.

It should be noted that the properties of the ply with yarn in the +45◦/− 45◦-directions
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Table 2.1: Mechanical properties of the 0◦/90◦ plain weave (Vf = 0.51).

layer type E11 = E33 E22 G13 G23 = G12 ν13 ν23 = ν21

(GPa) (GPa) (GPa) (GPa)

0◦/90◦ 57.3 7.6 3.9 2.5 0.039 0.066

+45◦/− 45◦ 13.5 7.6 27.6 2.5 0.774 0.066

were obtained by rotating the properties of the 0◦/90◦ ply about the x2-axis (shown in

Fig. 1.1) by 45◦.

Substitution of the reduced compliance components s
′(k)
αβ , given in eq. (2.5), into the sextic

equation of Lekhnitskii (1950), shown in eq. (A-14), leads to

l2(p)l4(p) = 0. (2.8)

The solution of eq. (2.8) results in expressions for the eigenvalues p
(k)
α of both materials

given as

p
(k)
1,2 =

√√√√√−
(
2s

′(k)
12 + s

′(k)
66

)
±
√(

2s
′(k)
12 + s

′(k)
66

)2
− 4s

′(k)
11 s

′(k)
22

2s
′(k)
11

p
(k)
3 =

√√√√−s
′(k)
44

s
′(k)
55

.

(2.9)

In this particular case, substitution of the components of both reduced compliance ma-

trices, shown in Table 2.3, reveals that p
(k)
1 and p

(k)
2 are fully imaginary, resulting in

p
(k)
1 = iβ

(k)
1

p
(k)
2 = iβ

(k)
2

p
(k)
3 = iβ

(k)
3 ,

(2.10)

Table 2.2: Coefficients of thermal expansion of the 0◦/90◦ plain weave (Vf = 0.51).

layer type α11 = α33 (×10−6/◦C) α22 (×10−6/◦C)

0◦/90◦ 2.9 52.1
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Table 2.3: Values of the reduced compliance matrix components for upper and lower
materials.

layer type s
′(k)
11 s

′(k)
12 s

′(k)
22 s

′(k)
66 = s

′(k)
44 s

′(k)
55

weave orientation (1/TPa) (1/TPa) (1/TPa) (1/TPa) (1/TPa)

k = 1, 0◦/90◦ 17.42 -9.06 127.72 400.0 259.74

k = 2, + 45◦/− 45◦ 29.71 -15.46 131.04 400.0 36.25

where

β
(k)
1,2 =

√√√√√
(
2s

′(k)
12 + s

′(k)
66

)
∓
√(

2s
′(k)
12 + s

′(k)
66

)2
− 4s

′(k)
11 s

′(k)
22

2s
′(k)
11

β
(k)
3 =

√√√√s
′(k)
44

s
′(k)
55

.

(2.11)

It may be noted that the term in the inner square-root is positive.

By substituting the retrieved eigenvalues p
(k)
α and the reduced compliance components

s
′(k)
αβ into the expressions of the Stroh eigenvectors, given in eqs. (B-16) and (B-17), one

obtains explicitly the forms for the matrices Ak, Bk and B−1
k as

Ak =




k
(k)
1

(
s
′(k)
12 − s

′(k)
11 β

(k)
1

2
)

k
(k)
2

(
s
′(k)
12 − s

′(k)
11 β

(k)
2

2
)

0

−i k
(k)
1

β
(k)
1

(
s
′(k)
22 − s

′(k)
12 β

(k)
1

2
)

−i k
(k)
2

β
(k)
2

(
s
′(k)
22 − s

′(k)
12 β

(k)
2

2
)

0

0 0 i
k
(k)
3

β
(k)
3

s
′(k)
44




, (2.12)

Bk =




−ik(k)1 β
(k)
1 −ik(k)2 β

(k)
2 0

k
(k)
1 k

(k)
2 0

0 0 −k(k)3


 , (2.13)

B−1
k =

1

β
(k)
2 − β

(k)
1




− i

k
(k)
1

β
(k)
2

k
(k)
1

0

i

k
(k)
2

−β
(k)
1

k
(k)
2

0

0 0 −

(
β
(k)
2 − β

(k)
1

)

k
(k)
3




. (2.14)
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The result of the matrix multiplication AkB
−1
k which is required in developing the asymp-

totic displacement and stress fields in the vicinity of the delamination front is given ex-

plicitly by

AkB
−1
k =




−is′(k)11

(
β
(k)
1 + β

(k)
2

)
s
′(k)
12 +

√
s
′(k)
11 s

′(k)
22 0

−
(
s
′(k)
12 +

√
s
′(k)
11 s

′(k)
22

)
−i
√
s
′(k)
11 s

′(k)
22

(
β
(k)
1 + β

(k)
2

)
0

0 0 −i
√
s
′(k)
44 s

′(k)
55



.(2.15)

The expression for AkB
−1
k , shown in eq. (2.15), are related to two of the three real

Barnett-Lothe tensors, Sk and Lk, as

AkB
−1
k = −SkL

−1
k − iL−1

k , (2.16)

where no summation is implied. Since Sk and Lk are real, it is possible to write

SkL
−1
k =




0 −
(
s
′(k)
12 +

√
s
′(k)
11 s

′(k)
22

)
0

s
′(k)
12 +

√
s
′(k)
11 s

′(k)
22 0 0

0 0 0


 , (2.17)

and

L−1
k =




s
′(k)
11

(
β
(k)
1 + β

(k)
2

)
0 0

0

√
s
′(k)
11 s

′(k)
22

(
β
(k)
1 + β

(k)
2

)
0

0 0

√
s
′(k)
44 s

′(k)
55



. (2.18)

There are three other important matrices, D, W and S̆, which are also required in devel-

oping the asymptotic displacement and stress fields. They are given by

D = L−1
1 + L−1

2 ,

W = S1L
−1
1 − S2L

−1
2 ,

S̆ = D−1W.

(2.19)

Thus, from eqs. (2.19)1 and (2.19)2

D =




2∑

k=1

s
′(k)
11

(
β
(k)
1 + β

(k)
2

)
0 0

0
2∑

k=1

√
s
′(k)
11 s

′(k)
22

(
β
(k)
1 + β

(k)
2

)
0

0 0

2∑

k=1

√
s
′(k)
44 s

′(k)
55




, (2.20)
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and

W =




0
2∑

k=1

(−1)k
(
s
′(k)
12 +

√
s
′(k)
11 s

′(k)
22

)
0

2∑

k=1

(−1)k+1

(
s
′(k)
12 +

√
s
′(k)
11 s

′(k)
22

)
0 0

0 0 0




, (2.21)

where

D−1 =




1
2∑

k=1

s
′(k)
11

(
β
(k)
1 + β

(k)
2

) 0 0

0
1

2∑

k=1

√
s
′(k)
11 s

′(k)
22

(
β
(k)
1 + β

(k)
2

) 0

0 0
1

2∑

k=1

√
s
′(k)
44 s

′(k)
55




. (2.22)

The matrix S̆ is defined in eq. (2.19)3, so that

S̆ =




0 S̆12 0

S̆21 0 0

0 0 0


 , (2.23)

where its non-zero components are given explicitly by

S̆12 =

2∑

k=1

(−1)k
(
s
′(k)
12 +

√
s
′(k)
11 s

′(k)
22

)

2∑

k=1

s
′(k)
11

(
β
(k)
1 + β

(k)
2

) ,

S̆21 =

2∑

k=1

(−1)k+1

(
s
′(k)
12 +

√
s
′(k)
11 s

′(k)
22

)

2∑

k=1

√
s
′(k)
11 s

′(k)
22

(
β
(k)
1 + β

(k)
2

) .

(2.24)
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2.2 The first term of the asymptotic solution of the

interface delamination

In this section, the first term of the asymptotic solution of both stress and displace-

ment fields is developed for the interface delamination between two tetragonal anisotropic

elastic materials as shown in Fig. 1.1b. The development is based upon the anisotropic

bimaterial interface crack representation of Ting (1996, pp. 341-345). The general forms

of the displacement vector u(k) and stress function vector φ(k) for a bimaterial interface

delamination, as presented by Ting (1996, p. 341) and following the Stroh formalism (see

Appendix B eq. (B-13) to eq. (B-15)), are considered. The arbitrary functions f(z
(k)
α ) in

the Stroh formalism (see Appendix B eq. (B-15)) were defined by Ting (1996) as

f(z(k)α ) = z(k)δ+1
α = z(k)δ+1

∗ for α = ∗ = 1, 2, 3 (2.25)

for an interface crack. Then, the displacement vector u(k) and stress function vector φ(k)

may be written as

u(k) = Ak〈z(k)δ+1
∗ 〉qk +Ak〈z(k)δ+1

∗ 〉q̃k (2.26)

and

φ(k) = Bk〈z(k)δ+1
∗ 〉qk +Bk〈z(k)δ+1

∗ 〉q̃k, (2.27)

where k = 1, 2 represent the upper and lower anisotropic elastic materials, respectively.

The 3×3 matrices, Ak and Bk, are the Stroh eigenvectors as described in Appendix B (see

eqs. (B-16) and (B-17)). Both qk and q̃k are arbitrary 3×1 constant vectors determined,

eventually, by satisfying the boundary conditions of traction free crack faces and traction

continuity along the interface. The overbar in eqs. (2.26) and (2.27) represents the complex

conjugate of the quantity, the angle brackets denote a diagonal matrix and z
(k)
∗ = rζ

(k)
∗

where

ζ (k)∗ (θ) = cos(θ) + p(k)∗ sin(θ). (2.28)

The polar coordinate system (r, θ) at the delamination front is shown in Fig. 1.1b. The

parameters p
(k)
∗ are the complex eigenvalues of each material which depend solely on its

mechanical properties, as may be seen from eqs. (2.10) and (2.11). They satisfy the sextic

equation for p
(k)
∗ , which is given in eqs. (A-14) and (B-8) following the Lekhnitskii (1950)

and the Stroh (1958) formalisms, respectively. The complex constant δ is the eigenvalue

of the crack problem; its lowest real part gives the stress singularity. Its imaginary part

may differ for every material pair of the interface.

For each material the stress function φ(k) is related to the stress field components by

σ
(k)
j1 = −φ(k)

j,2 , σ
(k)
j2 = φ

(k)
j,1 . (2.29)
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The traction free crack face (θ = ±π) boundary conditions may be written as

σj2
(1)

∣∣∣∣
θ=+π

= σj2
(2)

∣∣∣∣
θ=−π

= 0, (2.30)

where σ
(k)
j2 are the stress tensor components of material k. Referring to eq. (2.29)2 along

the crack faces, one may write that

φ
(k)
j,1

∣∣∣∣
θ=±π

= 0. (2.31)

Integration of eq. (2.31) by x1 along the crack faces results in

φ
(k)
j

∣∣∣∣
θ=±π

= constant. (2.32)

Without loss of solution generality, along the crack faces the stress function vector may

be defined as

φ(k)

∣∣∣∣
θ=±π

= 0. (2.33)

In order to satisfy eq. (2.33), substitution of θ = ±π in eq. (2.27) will determine the form

of the arbitrary 3×1 constant vectors qk and q̃k, which appear in eqs. (2.26) and (2.27),

and are given by

qk = (−1)k
i

2
B−1
k e(−1)kiπδgk, q̃k = (−1)k+1 i

2
B

−1

k e(−1)k+1iπδgk. (2.34)

The arbitrary complex vector gk is determined by satisfying the continuity of traction

along the interface. Under the assumption that the bimaterial interface is perfectly

bonded, both displacements and tractions are continuous along the interface where θ = 0

for every value of r. Traction continuity along the interface may be written as

σj2
(1)

∣∣∣∣
θ=0

= σj2
(2)

∣∣∣∣
θ=0

. (2.35)

Referring to eq. (2.29)2, along the interface and similar to eq. (2.33)

φ
(1)
j

∣∣∣∣
θ=0

= φ
(2)
j

∣∣∣∣
θ=0

. (2.36)

This equivalence leads to the relationship which exists between the arbitrary complex

vector gk of both materials, meaning

g1 = g2 = d. (2.37)

Hence, the expressions for the displacement and stress function fields become

u(k) =
i

2

{
(−1)ke(−1)kiπδAk〈z(k)δ+1

∗ 〉B−1
k + (−1)k+1e(−1)k+1iπδAk〈z(k)δ+1

∗ 〉B−1

k

}
d (2.38)



46

and

φ(k) =
i

2

{
(−1)ke(−1)kiπδBk〈z(k)δ+1

∗ 〉B−1
k + (−1)k+1e(−1)k+1iπδBk〈z(k)δ+1

∗ 〉B−1

k

}
d, (2.39)

respectively.

Next, in order to determine the stress singularities δ, displacement continuity along the

interface is satisfied. Continuity of the displacement vector along the interface may be

written as

u(1)

∣∣∣∣
θ=0

= u(2)

∣∣∣∣
θ=0

. (2.40)

Substitution of θ = 0 within the expression of the displacement field of each material,

given in eq. (2.38), leads to {
S̆− cot δπI

}
d = 0, (2.41)

where I is the identity matrix and the matrix S̆ is defined in eq. (2.19)3.

The values of δ may be obtained from the complex eigenvalues cot δπ, which are derived

by setting

|S̆− cot δπI| = 0 (2.42)

for every nontrivial solution of d. While solving eq. (2.42), one will obtain the three

eigenvalues cot δπ which posses the form of

cot δπ = ∓iβ, 0, (2.43)

where

0 ≤ β =

{
−1

2
tr
(
S̆2
)}1/2

< 1. (2.44)

The value of β was chosen to be positive without loss of generality and tr represents the

trace of the matrix. Extraction of the stress singularities δm for m = 1, 2, 3, reveals that

δ1 = −1

2
+ iε, δ2 = −1

2
− iε, δ3 = −1

2
, (2.45)

where the oscillatory parameter ε is given by

ε =
1

2π
ln

(
1 + β

1− β

)
. (2.46)

The values of the eigenvectors dm for m = 1, 2, 3 are obtained by substitution of the

corresponding stress singularity δm into eq. (2.41), resulting in

d1 = d, d2 = d, d3 = d∗, (2.47)
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where

d =






i

√
D22

D11

1

0





d2, d∗ =






0

0

1





d3. (2.48)

The unknown constants d2 and d3 are complex and real, respectively. Both will be ob-

tained by their relationship to the stress intensity factors K = K1 + iK2 and KIII . The

components Djj for j = 1, 2 (no summation) are given explicitly in eq. (2.20).

Based upon the expressions of the stress singularities given in eq. (2.45) and their cor-

responding eigenvectors shown in eq. (2.47), it is clear that the displacement vector u(k)

and the stress function vector φ(k) are actually a superposition of the solutions obtained

above, meaning that each vector is constructed from an oscillatory singular part (os) and

a regular square-root singular part (s), namely

u(k) = u(k)
os

+ u(k)
s
,

φ(k) = φ(k)
os

+ φ(k)
s
.

(2.49)

The oscillatory part is obtained by superposing the two oscillatory solutions for δ1, d and

δ2, d. Nevertheless, despite the oscillatory singularity, the results for both vectors, the

displacement and the stress function, are real quantities.

For the displacement vector and the stress function vector, respectively, expressions are

given by

u
(k)
os = ℜ

{
e(−1)k+1πεAk〈z

(k)( 1
2
+iε)

∗ 〉B−1
k d+ e(−1)kπεAk〈z

(k)( 1
2
−iε)

∗ 〉B−1
k d

}

φ
(k)
os = ℜ

{
e(−1)k+1πεBk〈z

(k)( 1
2
+iε)

∗ 〉B−1
k d+ e(−1)kπεBk〈z

(k)( 1
2
−iε)

∗ 〉B−1
k d

}
.

(2.50)

For the regular square-root singularity, the displacement vector and the stress function

vector, may be found as

u
(k)
s = ℜ

{
Ak〈z

(k)( 1
2)

∗ 〉B−1
k

}
d∗

φ
(k)
s = ℜ

{
Bk〈z

(k)( 1
2)

∗ 〉B−1
k

}
d∗.

(2.51)

In order to achieve the explicit first terms of the asymptotic solution, the values of the

unknown constant d2 and d3, shown in eq. (2.48), must be determined. As described

previously, it is assumed that the bimaterial interface is perfectly bonded so that both

displacement and traction are continuous along the interface where θ = 0 for every value
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of r (the interface is shown in Fig. 1.1b). The traction continuity condition along the

interface (x2 = x3 = 0) is given in eq. (2.35). Referring to eq. (2.29)2, where the relation

between stresses and the stress function components are defined, differentiating φ(k) once

by x1 and then substituting θ = 0 in the resultant will provide the following oscillatory

singular and regular square-root singular expressions, respectively

φ
(k)
os,1

∣∣∣∣
θ=0

=
cosh πε√

r
ℜ
{
(1 + 2iε)riεd

}
(2.52)

and

φ
(k)
s,1

∣∣∣∣
θ=0

=
1

2
√
r
d∗. (2.53)

Substitution of the terms of d and d∗, given in eq. (2.48), leads to the expressions of

σ
(k)
j2 , where each stress component is constructed from an oscillatory singular part and a

regular square-root singular part, resulting in





σ12

σ22

σ32





∣∣∣∣∣∣∣∣∣∣∣
θ=0

=





σ12os

σ22os

σ32os





∣∣∣∣∣∣∣∣∣∣∣
θ=0

+





σ12s

σ22s

σ32s





∣∣∣∣∣∣∣∣∣∣∣
θ=0

. (2.54)

The oscillatory singular part is given by






σ12os

σ22os

σ32os






∣∣∣∣∣∣∣∣∣∣
θ=0

=
cosh πε√

r






−
√
D22

D11
ℑ [(1 + 2iε)riεd2]

ℜ [(1 + 2iε)riεd2]

0






, (2.55)

whereas, the regular square-root singular part is given by





σ12s

σ22s

σ32s





∣∣∣∣∣∣∣∣∣∣
θ=0

=
d3
2
√
r





0

0

1





. (2.56)

The expression for the in-plane stress components for an elastic anisotropic bimaterial

interface crack may be represented similarly to that of an isotropic bimaterial interface

crack, shown in eq. (1.5). In the case of an elastic anisotropic bimaterial interface crack,

the expression for the in-plane stress components may be written as

σ
(k)
αβ =

1√
2πr

[
ℜ
(
Kriε

)
k
Σ

(1)
αβ(θ) + ℑ

(
Kriε

)
k
Σ

(2)
αβ(θ)

]
; (2.57)
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the out-of-plane components are

σ
(k)
3β =

1√
2πr

(KIII)kΣ
III
3β (θ), (2.58)

where α, β = 1, 2. The in-plane complex stress intensity factor K is defined in eq. (1.6)

and KIII is the out-of-plane real mode III stress intensity factor. The stress functions

kΣ
(1)
αβ(θ), kΣ

(2)
αβ(θ) and kΣ

III
3β (θ) depend upon the mechanical properties of the materials on

both sides of the interface and will be given explicitly in the sequel.

Since eqs. (2.57) and (2.58) describe the stress field in the vicinity of the delamination

front where r → 0 for every value of θ, by setting θ = 0 it will be possible to describe the

stress components along the interface. By setting r → 0 in eq. (2.54), the same expressions

for the stress components should be obtained. This equivalence enables determination of

the vectors d and d∗ in terms of the stress intensity factors.

The in-plane complex stress intensity factor K is related only to the oscillatory singular

stress components by

K ≡ lim
r→0

√
2πr

riε

(
σ22 − i

√
D11

D22
σ12

) ∣∣∣∣
θ=0

, (2.59)

resulting in

d2 =
K√

2π(1 + 2iε) cosh πε
. (2.60)

The out-of-plane real stress intensity factor KIII is related only to the regular square-root

singular stress component by

KIII ≡ lim
r→0

√
2πrσ32

∣∣∣∣
θ=0

, (2.61)

resulting in

d3 =

√
2

π
KIII . (2.62)

Hence, by substituting the expressions obtained for d2 and d3 given in eqs. (2.60) and (2.62),

respectively, into eq. (2.48) results in

d =






i

√
D22

D11

1

0






K√
2π(1 + 2iε) coshπε

, d∗ =






0

0

1






√
2

π
KIII . (2.63)

The representation of the displacement components and the stress components by means

of the stress intensity factors at this stage is now possible. The in-plane displacement

components may be written as

u(k)α =

√
r

2π

[
ℜ
(
Kriε

)
kU

(1)
α (θ) + ℑ

(
Kriε

)
kU

(2)
α (θ)

]
; (2.64)
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whereas, the out-of-plane displacement component is given by

u
(k)
3 =

√
r

2π
KIII kU

(III)
3 (θ). (2.65)

The parameter α = 1, 2 and k = 1, 2 designates the upper and lower materials, respec-

tively. The displacement functions kU
(1)
α (θ), kU

(2)
α (θ) and kU

(III)
3 (θ) depend on the angle

θ as shown in Fig. 1.1b and on the mechanical properties of the materials on both sides

of the interface. The in-plane displacement functions of both materials are given by

kU
(1)
1 = kc

∗
1

2∑

s=1

2∑

t=1

(−1)s+t kÑst kQs

(
kN

∗
st D̃ + β∗(k)

s

)

kU
(2)
1 = kc

∗
1

2∑

s=1

2∑

t=1

(−1)s kÑst kQs

(
kn

∗
st D̃ + kM

∗
stβ

∗(k)
s

)

kU
(1)
2 = kc

∗
1

2∑

s=1

2∑

t=1

(−1)s kÑst kQs+2

[
βs

(k)
]−1(

kM
∗
st D̃ + kn

∗
st βs

∗(k)
)

kU
(2)
2 = −kc

∗
1

2∑

s=1

2∑

t=1

(−1)s+t kÑst kQs+2

[
βs

(k)
]−1(

D̃ + kN
∗
st β

∗(k)

s

)

(2.66)

where D̃ is given by means of two diagonal members of the matrix D as

D̃ =

√
D22

D11
. (2.67)

The auxiliary functions within eqs. (2.66) for s = 1, 2, 3 are defined as

kBs = cos2 θ + [β
(k)
s ]2 sin2 θ, kϕs = arg

(
cos θ + iβ

(k)
s sin θ

)
,

kns1 = cos
kϕs
2
, kns2 = sin

kϕs
2
,

(2.68)

whereas, for s, t = 1, 2 they are given by

kc
∗
s =

2
[
1
2
(1 + 4ε2)

]s−1

(β
(k)

1 − β
(k)

2 )(1 + 4ε2) cosh πε
, kms =

ε

2
ln kBs,

kQs = −s′(k)12 +
[
β
(k)
s

]2
s
′(k)
11 , kQs+2 = s

′(k)
22 −

[
β
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The out-of-plane displacement function kU
III
3 is given by

kU
III
3 = 2s

′(k)
44

[
β
(k)
3

]−1

kB
1
4
3 kn32

= 2

√
s
′(k)
44 s

′(k)
55 k

B
1
4
3 kn32.

(2.70)
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The first term of the asymptotic solution for the stress components is given in eqs. (2.57)

and (2.58). The in-plane stress functions kΣ
(1)
αβ(θ) and kΣ

(2)
αβ(θ) may be written as

kΣ
(1)
11 = − kc

∗
2

2∑
s=1
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2
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]2 (
kN

∗
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)
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where all functions are defined in eqs. (2.67) to (2.69).

Again, the out-of-plane stress functions are much simpler and given by

kΣ
III
31 = −β(k)

3 kB
− 1

4
3 kn32

= −

√√√√s
′(k)
44

s
′(k)
55

kB
− 1

4
3 kn32,

kΣ
III
32 = kB

− 1
4

3 kn31.

(2.72)

It may be noted that in Banks-Sills et al. (2013), where the same interface is consid-

ered, the expressions for the stress functions, denoted by kΣ
(1)
αβ(θ), kΣ

(2)
αβ(θ) and kΣ

III
3β (θ)

in eqs. (2.57) and (2.58), as well as for the displacement functions, denoted by kU
(1)
α (θ),

kU
(2)
α (θ) and kU

(III)
3 (θ) in eqs. (2.64) and (2.65), are also presented within the Appendices

of that study. To use them, further algebra is required. Here, those stress and displace-

ment functions, as well as other expressions, which were also required in developing the

asymptotic displacement and stress fields, are given explicitly in a much simpler form.

The first term of the asymptotic displacement field given in eqs. (2.64) and (2.65) is

used in the M -integral and displacement extrapolation methods which are presented in

Chapter 3.



Chapter 3

Methods of Calculating Stress

Intensity Factors

There are several methods to obtain all stress intensity factors separately, meaning calcu-

lating the contribution of each factor K1, K2 and KIII to the overall stress. Once the first

terms of the asymptotic stress and displacement fields in the vicinity of a delamination

front were determined for a specific interface, the extraction of each stress intensity factor

is possible. In this chapter two methods for extracting the stress intensity factors are

presented. The straightforward method is based upon displacement extrapolation and is

being presented in Section 3.1. The second method is being presented in Section 3.2. It

is based on conservative integrals and therefore it is more complicate and accurate. In

general, both methods are applicable for every interface delamination. In this research

the following expressions are valid only for the particular case of an interface delamination

between two tetragonal anisotropic elastic materials where the interface is constructed of

0◦/90◦ and a +45◦/− 45◦ balanced plain weaves as shown in Fig. 1.1b.

3.1 Displacement extrapolation

While using the same coordinate system at the crack tip, as shown in Fig. 1.1b, the

relative displacement of the crack faces or the ”jump” in the crack face displacements

within the neighborhood of a delamination front may be given by

∆ui ≡ u
(1)
i (r, θ = π)− u

(2)
i (r, θ = −π). (3.1)

Here the superscripts (1) and (2) represent the upper and lower materials, respectively,

and ui is the displacement in the xi direction for i = 1, 2, 3.
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Substitution of θ = π and θ = −π for the upper and lower materials, respectively, in

the oscillatory singularity displacement expressions given in eq. (2.50)1 will result in the

following reduced expressions

u(1)
os

∣∣∣∣
θ=π

= 2
√
r L−1

1 ℜ
{
riεd

}
,

u(2)
os

∣∣∣∣
θ=−π

= −2
√
r L−1

2 ℜ
{
riεd

}
,

(3.2)

where L−1
k is defined as

L−1
k = ℑ

{
−AkB

−1
k

}
, (3.3)

and explicitly presented in eq. (2.18).

Substitution of θ = π and θ = −π for the upper and lower materials, respectively, in the

regular square-root singularity displacement expressions given in eq. (2.51)1 will result,

again, in reduced expressions given by

u(1)
s

∣∣∣∣
θ=π

=
√
r L−1

1 d∗,

u(2)
s

∣∣∣∣
θ=−π

= −
√
r L−1

2 d∗.

(3.4)

Following eq. (3.1) the oscillatory singularity crack face displacement ”jump” vector is

given by

∆uos = 2
√
r Dℜ

{
riεd

}
, (3.5)

whereas the regular square root singularity crack face displacement ”jump” vector is given

by

∆us =
√
r Dd∗. (3.6)

Substitution of D and d as given in eq. (2.19)2 and eq. (2.63)1, respectively, into eq. (3.5)

will lead to the following representation of the oscillatory singularity crack face displace-

ment ”jump” vector





∆u1os

∆u2os

∆u3os





=

√
2r

π

D22

cosh πε





−
√
D11

D22
ℑ
[

Kriε

(1 + 2iε)

]

ℜ
[

Kriε

(1 + 2iε)

]

0





. (3.7)
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The following representation of the regular square root singularity crack face displacement

”jump” vector is obtained by substituting D and d∗ as given in eq. (2.19)2 and eq. (2.63)2,

respectively, into eq. (3.6)





∆u1s

∆u2s

∆u3s





=

√
2r

π
D33KIII





0

0

1




. (3.8)

At this stage, one may extract the local stress intensity factorsK∗
1 , K

∗
2 and K∗

III from their

relations with the values of the crack faces displacement jumps. Generally, these values

may obtained via finite element model analyses or digital imaging of test specimens. The

local in-plane complex stress intensity factor components K∗
1 and K∗

2 are related to the

in-plane displacement jumps by




K∗

1(r)

K∗
2(r)



 =

√
π

2r

cosh πε

D22




√
D22

D11
ℑ [r−iε(1 + 2iε)] ℜ [r−iε(1 + 2iε)]

−
√
D22

D11

ℜ [r−iε(1 + 2iε)] ℑ [r−iε(1 + 2iε)]







∆u1(r)os

∆u2(r)os



 (3.9)

whereas the local out-of-plane stress intensity factor component K∗
III is related to the

out-of-plane displacement jump by

K∗
III(r) =

√
π

2r

∆u3(r)s
D33

. (3.10)

3.2 M-integral

As mentioned in Section 1.3, the conservative mechanical M-integral was first introduced

by Chen and Shield (1977) for cracks within a linear elastic, homogeneous and isotropic

medium and was extended for interface cracks between two linear elastic, homogeneous

and isotropic materials as a line integral by Wang and Yau (1981). Since the M-integral

method was found to produce accurate results for the stress intensity factors, it was

implemented by others and was further extended to account for different cases of interest.

It was extended for bimaterial interface cracks in two dimensions under thermal loads by

Banks-Sills and Dolev (2004). It was further extended for three-dimensional problems

for both mechanical (see Freed and Banks-Sills, 2005) and thermal residual stresses (see

Banks-Sills et al., 2006). The moving least-square method was employed by Nagai et al.

(2007) to calculate stress intensity factors in three-dimensional interface crack problems

by means of the M-integral. Following the moving least-square, each term of the M-

integral is approximated by solely employing the nodal point displacements obtained via

FEM in the location where integration is performed. This work was extended by Nagai
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Table 3.1: Stress intensity factors for the three-dimensional auxiliary solutions.

solution K1 K2 KIII

2a 1 0 0

2b 0 1 0

2c 0 0 1

et al. (2012) for three-dimensional problems involving thermal residual stresses and was

further extended by Nagai et al. (2013) for three-dimensional problems, in which the FE

mesh is modeled with tetrahedral elements.

The discussion below follows the presentation in Banks-Sills et al. (2013), for the in-

vestigated interface between two tetragonal anisotropic elastic materials subjected to a

mechanical applied load. For completeness, it is presented once again here. The three-

dimensional M-integral is given by

M
(1,2α)
N =

1

A1

2∑

k=1

∫

Vk

{

kσ
(1)
ij

∂ku
(2α)
i

∂x1
+ kσ

(2α)
ij

∂ku
(1)
i

∂x1
− kW

(1,2α)δ1j

}
∂q1
∂xj

dV , (3.11)

where k = 1, 2 represents the upper and lower materials, respectively. The superscript (1)

represents the solution being sought while the superscript (2α) for α = a, b, c represents

the auxiliary solutions, which consist of three independent (separate) components, each

component with its particular stress intensity factor, as detailed in Table 3.1. These stress

intensity factors are in turn substituted into the auxiliary solutions which come from the

first term of the asymptotic solution, as presented in Section 2.2. The volume Vk of

finite elements, where the integration is performed, is one element thick along the model

thickness and δij is the Kronecker delta. The subscript N denotes the element along the

delamination or crack front, as shown in Fig. 3.1, in which the crack front is along the

x3-axis. The area A1 is given by

A1 =

∫ LN

0

ℓ
(N)
1 (x3)dx3 , (3.12)

where LN is the length of the element and ℓ
(N)
1 (x3) is a parabolic virtual crack extension,

also illustrated in Fig. 3.1. It should be noted that the value ofM
(1,2α)
N is an average value

of M (1,2α) along the delamination front of element N .

In eq. (3.11), the mutual strain energy density kW
(1,2α) of the two solutions in the upper

and lower materials is given by

kW
(1,2α) = kσ

(1)
ij kε

(2α)
ij = kσ

(2α)
ij kε

(1)
ij , (3.13)
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Figure 3.1: Illustration of a finite element mesh along a delamination/crack front and a

virtual crack extension ℓ
(N)
1 (x3).

whereas the function q1 is a normalized virtual crack extension given by

q1 =
20∑

i=1

Ni(ξ, η, ζ) q1i . (3.14)

In eq. (3.14), Ni(ξ, η, ζ) are the shape functions of a twenty noded isoparametric, brick

element and q1i is a vector which determines the virtual displacement of the element nodal

points, as detailed in Freed and Banks-Sills (2005). The expression in eq. (3.11) is also

applicable for two general anisotropic materials.

The interaction energy may also be expressed by means of the stress intensity factors of

both solutions (1) and (2α). From eq. (1.17), it may be shown that

M
(1,2α)
N =

2

H1

(
K

(1)
1 K

(2α)
1 +K

(1)
2 K

(2α)
2

)
+

2

H2
K

(1)
IIIK

(2α)
III , (3.15)

where
1

H1
=

D22

4 cosh πε
,

1

H2
=
D33

4
. (3.16)

The oscillatory parameter ε is defined in eq. (2.46), whereas D22 and D33 are two diagonal

members of the matrix D given in eq. (2.20).

Substitution of the auxiliary solutions (2α) according to Table 3.1 into eqs. (3.11) and (3.15)

results in the following separate expressions for the stress intensity factors of the desired

solution (1)

K
(1)
1 =

H1

2A1

2∑

k=1

∫

Vk

[

kσ
(1)
ij

∂ku
(2a)
i

∂x1
+ kσ

(2a)
ij

∂ku
(1)
i

∂x1
− kW

(1,2a)δ1j

]
∂q1
∂xj

dV , (3.17)

K
(1)
2 =

H1

2A1

2∑

k=1

∫

Vk

[

kσ
(1)
ij

∂ku
(2b)
i

∂x1
+ kσ

(2b)
ij

∂ku
(1)
i

∂x1
− kW

(1,2b)δ1j

]
∂q1
∂xj

dV (3.18)
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(a) (c)(b) (e)(d)

Figure 3.2: Two-dimensional cross-sections of integration domains; each domain is one
element thick along the delamination/crack front.

and

K
(1)
III =

H2

2A1

2∑

k=1

∫

Vk

[

kσ
(1)
ij

∂ku
(2c)
i

∂x1
+ kσ

(2c)
ij

∂ku
(1)
i

∂x1
− kW

(1,2c)δ1j

]
∂q1
∂xj

dV . (3.19)

Software was written to carry out the calculation of these integrals. Use of the FE method

to determine the displacement field of the solution being sought (1) and theM-integral al-

low extraction of the stress intensity factors for the investigated interface. An illustration

of five representative Vk volumes (domains), where the integration is performed, is pre-

sented in Fig. 3.2. A square-root singularity is imposed upon elements with nodal points

that intersect the delamination front, by means of a quarter-point distance definition for

nodes that are adjacent to the delamination front.

It may be pointed out that thermal residual stresses or strains generally occur during the

manufacturing process of a laminate composite plate (mostly at the curing stage). Here,

the small residual strains resulting from the mismatch between the carbon fiber and epoxy

matrix are neglected. For the investigated MD balanced plain woven interface (0◦/90◦

// +45◦/-45◦), there is no mismatch in the thermal properties between the laminate

composite plies, so that the residual thermal strains are the same in each ply. Hence, the

residual stresses of this laminate are minimal.

3.3 Benchmark problem

The developed methods for stress intensity factor extraction, DE in Section 3.1 and the

three-dimensional conservative M-integral in Section 3.2, are validated in this section. To

this end, three benchmark problems using the known asymptotic solutions in eqs. (2.64)
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and (2.65) with the stress intensity factors in Table 3.1 were solved by performing nu-

merical analyses. The FE model of a disk with an edge delamination was constructed

in ADINA (Bathe, 2011), as presented in Fig. 3.3. The dimensions of the model are

Figure 3.3: FE model used to analyze each of the benchmark problems containing 131,360
twenty noded isoparametric, brick elements and 947,821 nodal points. (a) Isometric-view
of the mesh and (b) detailed front-view of the delamination tip region.

R = 20 m, R/a = 1, B/a = 0.4, where a is the delamination length, and R and B are

the radius and thickness of the disk, respectively. The FE model contains 131,360 twenty

noded isoparametric, brick elements and 947,821 nodal points. Use of quarter-point ele-

ments was made in elements with edges along the delamination front, in order to model

the square-root singularity next to the delamination tip. It should be noted that the

in-plane stresses have a square-root, oscillatory singularity. Hence, the oscillatory part of

the singularity is not modeled. In addition, the dimensions of the elements in the vicinity

of the delamination tip were set to 0.055 × 0.055 × 0.4 m3, so that an in-plane aspect

ratio of 1 × 1 was obtained. A maximum in-plane aspect ratio of 1 × 4 was maintained

throughout the model. The material properties used to model the upper material are

presented in Table 2.1. The properties of the lower material were obtained by rotating

the properties of the upper material about the x2-axis (shown in Fig. 1.1) by 45◦. Dis-

placement boundary conditions were applied to the outer surfaces of the disk maintaining

traction free conditions on the delamination faces. For each benchmark problem, the first

term of the asymptotic displacement field in eqs. (2.64) and (2.65) were used with the

corresponding stress intensity factors, as detailed in Table 3.1. Then, the FE model was

analyzed to obtain a displacement field throughout the model.
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Figure 3.4: Deformed mesh of the three benchmark problems: (a) K1 = 1, K2 = 0,
KIII = 0; (b) K1 = 0, K2 = 1, KIII = 0; (c) K1 = 0, K2 = 0, KIII = 1.

The deformed models of the three cases detailed in Table 3.1 are presented in Fig. 3.4.

The obtained displacements were employed in the DE and theM-integral methods. In the

DE method, the jump in the displacements of the nodes of the delamination faces (upper

and lower, respectively), which were aligned to the same ray of nodes (emanating from

the same location along the delamination front and orthogonal to it) across the model

thickness, was used to evaluate the local stress intensity factors in eqs. (3.9) and (3.10).

The value of each global stress intensity factor was determined by performing a best three

point line fitting for adjacent points which are located in the vicinity of the delamination

front. The three point line with a coefficient of determination R2 closest to unity was used

to determine the value of the global stress intensity factor. In calculating the M-integral,

the elements surrounding the delamination front are employed. One slice of elements

throughout the model thickness is applied to evaluate the K
(1)
m (m = 1, 2, III) values

given in eqs. (3.17) to (3.19).

The obtained stress intensity factors for the three benchmark problems, which were cal-

culated by means of DE and the M-integral in four domains, are presented in Figs. 3.5

through 3.7 as a function of the normalized coordinate x3/B, which is located along the

delamination front as shown in Fig. 3.1. As expected, it may be observed that for the

first and second benchmark problems presented in Figs. 3.5 and 3.6, respectively, K1 and

K2 are symmetric about the mid-surface x3/B = 0.5 while KIII is anti-symmetric. As

for the third benchmark problem presented in Fig. 3.7, it may be observed that KIII is

symmetric about the mid-surface x3/B = 0.5 while K1 and K2 are anti-symmetric. It

should be noted that for the three benchmark problems, the DE evaluated stress intensity
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Figure 3.5: Results of the stress intensity factors for the first benchmark problem: K1 = 1,
K2 = 0, KIII = 0; (a) K1, (b) K2 and (c) KIII .

factors were found to be more accurate than the stress intensity factors evaluated by the

M-integral, especially at the outer surfaces of the FE model where x3/B → 0, 1. This

typically occurs for benchmark problems. It will not be the case for actual problems.

Comparison of the calculated and exact stress intensity factor values (analytic solution)

was quantified by means of a percent error, which is given by

error(%) =
K

(1)
m −K

(e)
m

K
(e)
max

× 100 (3.20)

where K
(1)
m , m = 1, 2, III, is the stress intensity factor calculated by means of the M-

integral, K
(e)
m , m = 1, 2, III, is the analytic solution and K

(e)
max in the denominator is the

maximum value of the analytic solution, which is unity.

For the first benchmark problem, the applied stress intensity factors are K1 = 1, K2 = 0

and KIII = 0. While neglecting edge effects in Fig. 3.5a, it may be seen that the value

of K1 obtained by integration performed in domain 1 (quarter-point elements next to the

delamination front) is inaccurate (an error of 1% at the mid-surface) as a result of inaccu-

rate representation of the fields. The values of K1 obtained by integration performed in

domains 3 and 4 almost converged to unity, with an error of 0.1% at the mid-surface and

0.3% at the outer surfaces of the model. The values obtained for K2 and KIII in domains

3 and 4 are O(10−4) to O(10−7) except near the outer surfaces of the model. Tabu-

lated results of the first benchmark problem are presented in Appendix D in Tables D.1

through D.3.

For the second benchmark problem, the applied stress intensity factors areK1 = 0, K2 = 1

and KIII = 0. While neglecting edge effects in Fig. 3.6b, it may be seen that the obtained

results for K2 from domain 1 are poor (an error of -21% at the mid-surface). In domain 2,

the error decreased to -0.6% at the mid-surface of the model. The values of K2 obtained

by integration performed in domains 3 and 4 almost converged to unity, with an error
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Figure 3.6: Results of the stress intensity factors for the second benchmark problem:

K1 = 0, K2 = 1, KIII = 0; (a) K1, (b) K2 and (c) KIII .

Figure 3.7: Results of the stress intensity factors for the third benchmark problem: K1 =
0, K2 = 0, KIII = 1; (a) K1, (b) K2 and (c) KIII .

of 0.03% at the mid-surface and 0.5% at the outer surfaces of the model, so that path

independence as well as convergence to unity were validated. For K1 and KIII , in domain

1 the maximum error was found to be approximately 1% and 0.5%, respectively. The

values obtained for K1 and KIII in domains 3 and 4 are O(10−5) to O(10−6) except near

the outer surfaces of the model. Tabulated results of the second benchmark problem are

presented in Appendix D in Tables D.4 through D.6.

In the third benchmark problem, KIII is the dominant stress intensity factor. While

neglecting edge effects in Fig. 3.7c, it may be seen that the obtained results for KIII in

domain 1 are inaccurate with an error of -3.8% at the mid-surface. In domain 2, the

error decreased to -0.06% at the mid-surface of the model. The values of KIII obtained

by integration performed in domains 3 and 4 almost converged to unity, with an error

of 0.01% at the mid-surface and 0.2% at the outer surfaces of the model. For K1 and

K2, in domain 1 the maximum error was found to be approximately 0.03% and 0.3%,

respectively. Since both applied stress intensity factors are zero (see case 2c in Table 3.1),
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the influence of the oscillatory singularity is mitigated. The values obtained for K1 and

K2 in domains 3 and 4 are O(10−5) to O(10−7) except near the outer surfaces of the

model. Tabulated results of the third benchmark problem are presented in Appendix D

in Tables D.7 through D.9.

Excellent results were obtained by means of the DE and the M-integral methods (exclud-

ing the results obtained from domain 1). Also, for the M-integral, path independence as

well as solution (single value) convergence were demonstrated. Hence, it may be concluded

that the utilities (software) developed for both methods are valid and may be employed

in this investigation.



Chapter 4

Mixed Mode Fracture Toughness

In this investigation, the BD specimen is used for measuring the mixed mode I/II interface

fracture toughness Gic for a delamination between two woven plain balanced plies. The

upper ply has yarn in the 0◦/90◦ directions and the lower ply has yarn in the +45◦/−45◦

directions. An illustration of a BD specimen, is presented in Fig. 4.1a. The layup of

the BD, MD laminate composite strip is shown in Fig. 4.1b, in which the red and white

layers represent the weave in the 0◦/90◦ and +45◦/ − 45◦ directions, respectively. A

compressive load P is applied to the BD specimen, through a stiff loading frame shown

in Fig. 4.2a using an Instron loading machine (model number 8872, Bucks, UK). Test

specimen dimensions were measured in the spirit of the ASTM E 399-12ε1 (2013) standard.

The test procedure is based upon the protocol described in Section 4.1. In Section 4.2,

some details about the chosen layup and the manufacturing process of the MD laminate

composite plate (BD composite strip) are presented. A total of thirty tests were performed

for several values of the loading angle ω shown in Fig. 4.1a to obtain a wide range of mode

mixities. The measured dimensions of each specimen and test results were used while

performing FE analyses. In Section 4.3, verification of FE mesh convergence, as well as,

analysis and test results are presented. Finally, an energy based fracture criterion, which

was established from the BD experimental data, is presented in Section 4.5.

4.1 Brazilian disk fracture test protocol

In this section the BD test protocol is presented. All BD specimens were put in a condi-

tioning chamber (M.R.C. BTH80/-20, Holon, Israel), as recommended in ASTM Standard

D5229/D5229M (2011), at 23± 1◦ C and 50± 3% relative humidity (RH). Also, accord-

ing to the ASTM Standard D5528-13 (2014), specimens should be tested at conditions of

23± 3◦ C and 50± 10% RH. At the beginning of each test, the temperature and the RH

63
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Figure 4.1: (a) Brazilian disk specimen containing a laminate composite strip with a

delamination. (b) Laminate composite strip layup. (c) Delamination zone with mesh

refinement about the upper delamination tip.

in the Instron work area are noted and their values are monitored continuously (every

5 min) throughout a test.

The Instron loading machine is employed with a load cell of maximum load 25 kN and

a resolution of ±0.25% of the reading for a load greater than 250 N. The cross-head

displacement of the Instron is increased quasi-statically at a rate of 0.5 mm/min until

failure. The cross-head displacement and applied load are obtained by a computer which

monitors the Instron machine. A LaVision system, consisting of computer software, a

camera and a programable timing unit (PTU), is employed during the test. The LaVision

monochrome CCD camera (model no. 1101396, Göttingen, Germany) has a Nikon Micro-

Nikkor 105 mm f/2.8 lens, 5 MP Imager Pro SX and a resolution of 2456 × 2058 pixels.

The DaVis (2015) computer software controls the LaVision camera, which is connected

to the LaVision external PTU. Prior to testing, the camera is aligned using a level. Also,

a specimen with millimetric paper attached to it is used to scale the images. During

a test, images of the test specimen are taken at a rate of 5 Hz while the applied load

is increased until fracture occurs and the test is stopped. The LaVision system enables

synchronization between the load applied by the Instron machine and the images of the

specimen acquired by the LaVision camera. In this way, the instantaneous applied load

is displayed on the appropriate image of the test specimen.
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Figure 4.2: (a) Brazilian disk specimen inside a stiff metal loading frame. (b) Brazilian

disk test setup.

Prior to carrying out a test, measurements of the geometric parameters of each BD spec-

imen are made, as shown in Figs. 4.3a and 4.3b. The thickness of the BD composite strip

B is measured with a digital micrometer, which has a resolution of 0.001 mm, at three

locations ahead of each delamination tip, as marked with black stars in Fig. 4.3a. The

diameter of the specimen 2R is measured four times, two measurements of the compos-

ite strip diameter and two measurements of the entire disk diameter (composed of the

composite-strip and the two aluminum partial disks). The diameter measurements are

made with an electronic digital caliper of resolution 0.01 mm. It should be noted that

a small difference (about 0.1 mm) was found between the values of 2R measured from

the composite strip and the entire disk, where 2R ∼ 40 mm. This difference is assumed

to be negligible. The delamination length 2a and the horizontal distance between each

delamination tip to its closest composite strip edge, shown in Fig. 4.3a and denoted by RL

and RR, are measured with the optical mode of an Olympus Confocal Microscope (model

number OLS4100; Tokyo, Japan), with a resolution of 0.16 (pixel/µm)2. The geometric

parameters, 2a, ht and hb (see Fig. 4.3a), are measured with an electronic digital caliper

after a test is conducted when the specimen is in two parts. It should be noted that the

delamination length 2a is actually the critical delamination length 2ac, which is measured

three times along specimen thickness at x3 = B/4, B/2 and 3B/4. The critical delamina-

tion length 2ac may be observed as the smooth zone of the fracture surface, which occurs

from the 15 µm thick non-adhesive polytetrafluoroethylene (PTFE) film.
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(a) (b)

Figure 4.3: Brazilian disk specimen geometric parameters: (a) illustration of the BD

specimen; (b) BD specimen inside a stiff metal loading frame before load is applied.

The height of the upper and lower sub-laminates HT and HB, respectively, are measured

approximately at the delamination mid-point with an electronic digital caliper after a

test is conducted when the specimen is in two parts. The total height of each part is

measured approximately at the delamination mid-point with an electronic digital caliper,

so that the height of each aluminum partial disk is obtained by subtracting the sub-

laminate height from the total height of the appropriate part. The geometric parameters,

RL and RR (see Fig. 4.3a), are measured from the end of the smooth zone of the fracture

surface to its closest composite strip edge at specimen mid-thickness (x3 = B/2) with

an electronic digital caliper after a test is conducted when the specimen is in two parts.

These dimensions, with some modifications as described below, were used in the FE model

of each BD specimen.

The need of small adjustments of these measurements may be explained by considering

Figs. 4.4a and 4.4b, in which the front and cross-sectional views of a typical BD specimen

are schematically shown, respectively. It should be noted that the specimen was manu-

factured while only one side of its circular faces was aligned, as seen on the left side of

Fig. 4.4b. The other side, as seen on the right side of Fig. 4.4b, had depth differences

between the faces of the aluminum partial disks and the composite strip, which has a

trapezoidal shaped cross-section. A typical difference of about 0.3 mm in the thickness

of the upper and lower surfaces of the composite strip, which are glued to the aluminum

partial disks, was detected. Thus, the specimen thickness B, which is measured along the

investigated interface, averaged those differences and was used in the FE model of each
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Figure 4.4: Views of a Brazilian disk specimen: (a) illustration of the front view and

(b) the cross-section A-A view of a BD specimen; (c) same cross-sectional view rotated

by 90◦. Example of a complete BD specimen (sp16.2) pictured at (d) rear-to-front

position, and (e) front-to-rear position. Example of a broken BD specimen (sp5.2) after

it was tested (f) pictured at rear-to-front position; its upper broken part pictured at

(g) rear-to-front position, and at (h) front-to-rear position.

BD specimen. The trapezoidal shape of the composite strip cross-section, as schemati-

cally presented in Fig. 4.4c and also emphasised with photographs of two representative

specimens in Figs. 4.4d through 4.4h, is a result of the cutting procedure, in which a

relatively thick rigid laminate composite-strip is cut via a water-jet machine, as described

in the sequel. Also, it may be seen that the delamination faces are not parallel to the

aluminum partial disks surfaces, which are glued to the composite strip upper and lower

surfaces.

Since the total diameter is composed of ht, HT , HB and hb is more accurate (aluminum

parts are not suspected to deform during specimen loading) the specimen diameter, de-

noted by 2R, is taken as

2R = ht +HT +HB + hb. (4.1)

The total length of the interface in which a delamination is introduced, denoted by D, is

given by

D = RR +RL + 2ac. (4.2)
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The parameters 2R and D, which are given respectively in eqs. (4.1) and (4.2), are used to

scale both RR and RL, where their scaled values are further used in the FE model of each

BD specimen. Scaling RR and RL helped to overcome the inaccuracies in measurements,

which were encountered while using an electronic caliper to measure separately several

segments along a given region, where the total length of that region should be equal to

the sum of lengths from all segments. The scaled parameters are given as

R
(sc)
L =

2R(RL + ac)

D
− ac

R
(sc)
R =

2R(RR + ac)

D
− ac

(4.3)

so that

2R = R
(sc)
L + 2ac +R

(sc)
R . (4.4)

The loading angle ω, as shown in Figs. 4.1a and 4.3, is measured from an image of the BD

specimen located within the loading frame via the Vision Assistant (2005) software. Also,

the location of the intersection between the specimen delamination and the load-line is

examined to verify proper conditions of load distribution, achieved when the delamination

center is located along the load-line, as shown in Fig. 4.3b. All geometric parameters,

measured or scaled as described above, are used in the FE model of each BD specimen.

4.2 Materials

Prior to BD specimen manufacturing, different composite-strip layups were examined

by means of FE analyses. The material properties used to model the plain woven plies

with the yarn in the 0◦/90◦-directions are presented in Table 2.1. The properties of

the ply with yarn in the +45◦/-45◦-directions were obtained by rotating the proper-

ties of the 0◦/90◦ ply about the x2-axis shown in Fig. 1.1b by 45◦ (Ting, 1996, pp.54-

55), and are also presented in Table 2.1. A ply group or stack constructed from the

same plain woven plies has the same material properties as a single ply with its total

thickness the sum of thicknesses of each ply within the ply group. The layup contains

69 carbon/epoxy (G0814/913) prepreg plain woven plies in the following stacking se-

quence: [(+45◦/− 45◦)7, (0
◦/90◦)2, (+45◦/− 45◦)4, (0

◦/90◦)3, [(+45◦/−45◦)4, (0
◦/90◦)2]s,

(0◦/90◦,+45◦/ − 45◦)2, 0
◦/90◦ // +45◦/ − 45◦, (0◦/90◦,+45◦/ − 45◦)3, 0

◦/90◦, [(+45◦/

− 45◦)4, (0
◦/90◦)2]s, (0

◦/90◦)3, (+45◦/ − 45◦)4, (0
◦/90◦)2, (+45◦/ − 45◦)7 ] , as shown in

Fig. 4.1b. The gray stacks consist of +45◦/-45◦ plain woven plies; the red stacks are

0◦/90◦ plies.

Composite strips containing an artificial delamination, which were used in preparing the

BD specimens, as shown in Fig. 4.1a, were cut via a water-jet machine from a composite
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(a) (b)

Figure 4.5: (a) Laminate composite plate during fabrication: PTFE films in blue and

thermocouples marked with white arrows. (b) Autoclave thermal cycling of the laminate

composite plate.

plate, which was fabricated and autoclave cured at IAI. The 300×500×15 mm3 laminate

composite plate was hand layered with 69 carbon/epoxy (G0814/913) prepreg plain woven

plies, each ∼0.22 mm thick. Five thermo-couples were inserted during plate fabrication at

different locations; hence, a uniform degree of cure was verified during the cure process.

The initial delamination, which was set to 15 mm long, was introduced by means of a

non-adhesive thin PTFE film. Only two thermocouples out of five, which were used to

measure the temperature during the autoclave process, are shown in Fig. 4.5a, as well as

the placement of the PTFE films. At those two thermocouples, the highest temperature

was recorded during the autoclave process.

The normalized thermal cycling of the composite plate during the autoclave process is pre-

sented in Fig. 4.5b. It is normalized by means of the curing temperature of the G0814/913

carbon/epoxy prepreg and by means of the thermal cycling duration. Also shown in

Fig. 4.5a are the thermocouples TC2, which is located in the center of the plate (both

mid-thickness and mid-width), and TC3, which is located in the plate mid-thickness next

to the plate edge. The increase in temperature is caused by the exothermic characteristic

reaction of the epoxy matrix and seen in Fig. 4.5b as the red and black curves. Never-

theless, a uniform degree of cure was obtained within the composite plate, since the cure

process temperature was higher than all former measured values.

A non-destructive test (NDT) was performed on the composite plate by means of the

phased array inspection method. This was carried out in order to detect the PTFE films

which serve as foreign objects. In this way, it was possible to cut composite strips to form

the specimen shown in Fig. 4.1a.
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Each composite strip was cut so that its thickness B was ∼8.1 mm; it also contained

two non-adhesive PTFE films. The location of the PTFE films, which was marked on

the upper surface of the composite plate while the NDT was performed, was copied

to the orthogonal faces of the composite strip. Two aluminum rectangles, ∼8.1 mm

thick, were glued (with 3M460 glue) above and beneath the composite strip after all

faces (aluminum and composite) were cleaned with acetone. It should be noted that the

glued aluminum-composite strip-aluminum assembly cross-section had a final shape as

shown schematically in Fig. 4.4b, in which the trapezoidal shape of the composite strip

is illustrated, so that depth differences and faces misalignments were obtained. After a

glued aluminum-composite strip-aluminum assembly was prepared, two BD specimens

were cut from it via a water-jet machine.

In each BD specimen, the delamination tips (PTFE ends) were detected and marked with

the aid of a Carl ZeissTM microscope (model Stemi 2000-C stereomicroscope, Göttingen,

Germany). Prior to specimen testing, the location of the interface and the artificial

delamination (PTFE) ends were marked with a non-structural transparent cello tape,

which might be observed in Fig. 4.3b. Use of the transparent cello tape allowed easy

placement of specimens within the loading frame, as well as fast adjustment of loading

angle.

4.3 Test results

Thirty BD specimens were tested based on the methodology presented in Section 4.1.

Twenty successful tests were carried out with the BD specimens subjected to different

negative values of the loading angle ω (shown positively in Fig. 4.1a). The geometric

parameters of these specimens are presented in Table 4.1. It should be noted that the

low values of the standard deviations (STDs) demonstrate the repeatability in specimen

fabrication, although the slit changes in the composite-strip cross-section width.

Ten successful tests were performed with BD specimens subjected to different positive

values of ω. To this end, an arrest hole was cut by a water-jet machine at the lower

delamination front, as shown in Fig. 4.6a, where the arrest hole in white is surrounded

by a red circle and the artificial delamination is between the two dark points. It should be

noted that without an arrest hole, the lower delamination front would propagate, repeating

the results for negative loading angles. The average value of the diameter of the arrest

hole was measured to be dhole = 1.76 ± 0.02 mm. Thus, it is considered to be constant

in the FE analyses of all BD specimens. The center of the hole was not aligned with the

investigated interface, nor did it coincide with the delamination tip as may be seen in

Fig. 4.6b. Thus, the remaining critical delamination length, denoted by 2a
(re)
c in Fig. 4.6c
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Table 4.1: Geometric parameters of the Brazilian disk specimens with ω < 0.

specimen ω RR RL 2ac R
(sc)
R R

(sc)
L D 2R HT HB ht hb B

number (◦) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

sp8.2 -2.06 12.92 12.03 15.60 12.75 11.86 40.55 40.21 7.72 8.19 12.04 12.26 8.16

sp9.1 -2.23 12.13 12.43 15.39 12.32 12.62 39.95 40.33 7.64 8.14 11.99 12.56 8.16

sp3.1 -2.23 12.05 12.42 16.00 12.15 12.53 40.47 40.68 7.40 8.26 12.40 12.62 8.24

sp1.1 -2.64 11.23 13.53 15.68 11.14 13.42 40.44 40.24 7.42 8.28 12.84 11.70 8.26

sp14.1 -2.73 13.80 11.85 15.67 13.19 11.30 41.32 40.16 7.38 8.12 12.42 12.24 8.20

sp7.2 -4.10 12.72 12.15 15.51 12.84 12.27 40.38 40.62 7.49 8.48 12.60 12.05 8.14

sp1.2 -4.94 12.44 12.18 15.40 12.59 12.33 40.02 40.32 7.52 8.29 12.59 11.92 8.25

sp12.1 -5.27 11.44 12.82 15.66 11.60 12.99 39.92 40.25 7.18 8.21 13.27 11.59 8.17

sp2.1 -5.86 13.29 11.56 15.48 13.22 11.50 40.33 40.20 7.17 8.33 12.53 12.17 8.21

sp11.2 -5.90 12.88 11.88 15.74 12.64 11.66 40.50 40.04 7.45 8.19 12.84 11.56 8.11

sp12.2 -9.21 11.83 13.21 15.17 11.84 13.22 40.21 40.23 7.38 7.83 13.08 11.94 8.15

sp13.2 -9.45 11.13 13.35 15.55 11.23 13.47 40.03 40.25 7.62 8.18 12.75 11.70 8.16

sp3.2 -9.67 11.45 13.24 15.35 11.53 13.33 40.04 40.21 7.52 8.23 12.47 11.99 8.24

sp8.1 -10.10 11.04 13.15 15.48 11.26 13.39 39.67 40.13 7.55 8.10 12.13 12.35 8.17

sp11.1 -10.11 13.05 11.95 15.39 13.08 11.97 40.39 40.44 7.18 7.97 13.28 12.01 8.16

sp4.2 -12.46 11.15 13.50 15.31 11.21 13.56 39.96 40.08 7.76 8.11 12.60 11.61 8.17

sp5.1 -12.94 11.63 13.57 15.19 11.53 13.45 40.39 40.17 7.86 8.01 11.50 12.80 8.17

sp2.2 -13.07 12.05 12.64 15.81 11.74 12.32 40.50 39.87 7.41 8.21 12.19 12.06 8.28

sp4.1 -13.20 11.27 13.83 15.24 11.15 13.70 40.34 40.09 7.39 8.24 12.78 11.68 8.11

sp6.2 -13.42 11.71 13.53 15.42 11.56 13.37 40.66 40.35 7.46 8.20 12.35 12.34 8.25

average 12.06 12.74 15.50 12.03 12.71 40.30 40.24 7.48 8.18 12.53 12.06 8.19

STD 0.82 0.71 0.21 0.74 0.77 0.35 0.19 0.19 0.14 0.44 0.36 0.05

and Table 4.2, and the interfacial remaining ligament at the bottom of the specimen,

denoted by R
(lig)
L , were measured for each specimen. The remaining delamination length

2a
(re)
c , is schematically shown in Fig. 4.6c and is measured three times along specimen

thickness (x3 = B/4, B/2 and 3B/4) with an electronic digital caliper after a test is

conducted when the specimen is in two parts. The interfacial remaining ligament R
(lig)
L ,

which is also presented in Fig. 4.6c, is measured with an electronic digital caliper at

specimen mid-thickness (x3 = B/2). In Table 4.2, all the geometric parameters which

were measured are presented.

The effective diameter of the arrest hole along the delamination, d
(eff)
hole , shown in Figs. 4.6b

and 4.6c, is evaluated from an image of the BD specimen located within the loading frame

that was photographed prior to testing via the Vision Assistant (2005) software; those

values of d
(eff)
hole appear in Table 4.2 and are used in the FE model of each BD specimen.

The offset distance, which is the distance between the delamination and the center of the

arrest hole, is denoted by chole as shown in Fig. 4.6b. It is calculated for each specimen

from

chole = ±1

2

√
d2hole − d

(eff)
hole

2
(4.5)

where its obtained values are presented in Table 4.3. In that table, parameters which

were calculated are presented. Recall that dhole is taken to be 1.76 mm. The positive and

negative values of chole represent whether the center of the arrest hole is above or beneath
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(a)

(b)

✞☛�✁ ✡✂

✄☎✆✝✟
✒✟✠✠☞

✌✍
✒✎✟☞

✞✏
✒✝✑✓☞ ✔✕✖✗✘✙✚✗✛✙✜✚

✢☎✆✝✟

✄☎✆✝✟
✒✟✠✠☞

✄☎✆✝✟

(c)

Figure 4.6: (a) BD specimen inside a stiff metal loading frame containing an arrest hole

marked with a red circle and an arrow. (b) A detailed view of the arrest hole, where

its center is shifted by chole from the delamination. (c) An illustration of the geometric

parameters of a BD specimen containing an arrest hole.

the delamination, respectively. In this way, the location of the center of the arrest hole

is accounted for in the FE analyses. The parameters RR and RL are scaled in a similar

manner as given in eqs. (4.3) to obtain R
(sc)
R and R

(sc)
L with the appropriate value for 2ac

(see Fig. 4.6c) given as

2ac = 2a(re)c +
d
(eff)
hole

2
. (4.6)

It should be noted that prior to scaling RL, it is first calculated as

RL = R
(lig)
L +

d
(eff)
hole

2
. (4.7)

After R
(sc)
L is obtained from eq. (4.3)1, the value of R

(lig,sc)
L is extracted using eq. (4.7)

with RL = R
(sc)
L . The values of RL, R

(sc)
L and R

(lig,sc)
L are presented in Table 4.3. Recall

that the parameters 2R and D were calculated using eqs. (4.1) and (4.2), respectively,

with 2ac calculated from eq. (4.6) and RL calculated from eq. (4.7). Additional geometric

parameters of the tested BD specimens containing a delamination arrest hole are presented

in Tables 4.2 and 4.3. Again, the STDs indicate repeatability in specimen fabrication.

The temperature ϑ and RH at the beginning of each test, as well as the applied loading

angle and load at fracture Pc are summarized in Tables 4.4 and 4.5, where the data is for

BD specimens which were subjected to negative and positive loading angles, respectively.

For each test, the time between specimen removal from the conditioning chamber and
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Table 4.2: Measured geometric parameters of the Brazilian disk specimens with a delam-
ination arrest hole and loading angle ω > 0.

specimen ω RR R
(lig)
L 2a

(re)
c d

(eff)
hole HT HB ht hb B

number (◦) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

sp10.1 1.72 12.07 11.90 14.74 1.51 7.47 8.37 12.52 11.95 8.08

sp14.2 2.50 13.32 11.54 14.09 1.50 7.56 8.28 11.90 12.28 8.16

sp10.2 2.69 12.14 11.94 14.48 1.76 7.38 8.36 12.37 12.05 8.17

sp16.1 2.74 12.20 11.63 13.84 1.76 7.63 8.44 12.12 12.13 8.14

sp15.1 4.03 11.84 11.57 14.40 1.76 7.86 8.10 11.94 12.08 8.18

sp9.2 4.30 11.70 12.45 14.70 1.50 7.64 8.14 12.05 12.41 8.05

sp15.2 4.67 10.82 12.11 15.39 1.76 7.48 8.27 13.40 11.49 8.15

sp7.1 5.35 11.57 13.20 13.89 1.50 7.56 8.35 12.31 11.87 8.17

sp6.1 9.89 12.57 10.32 15.37 1.50 7.64 8.33 12.30 12.17 8.18

sp5.2 10.43 13.20 11.01 14.28 1.50 7.70 8.15 11.36 12.93 8.15

average 12.14 11.77 14.52 1.61 7.59 8.28 12.23 12.14 8.14

STD 0.75 0.78 0.55 0.13 0.13 0.11 0.52 0.37 0.04

Table 4.3: Scaled and calculated geometric parameters of the Brazilian disk specimens
with a delamination arrest hole and loading angle ω > 0.

specimen 2R D R
(sc)
R R

(sc)
L R

(lig,sc)
L 2ac chole RL

number (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

sp10.1 40.31 40.21 12.11 12.70 11.95 15.49 -0.45 12.65

sp14.2 40.02 40.45 13.10 12.08 11.33 14.84 0.46 12.29

sp10.2 40.16 40.32 12.06 12.74 11.86 15.36 0.00 12.82

sp16.1 40.32 39.43 12.64 12.96 12.08 14.72 0.00 12.51

sp15.1 39.98 39.57 12.04 12.66 11.78 15.28 0.00 12.45

sp9.2 40.24 40.35 11.65 13.14 12.39 15.45 0.46 13.20

sp15.2 40.64 40.08 11.08 13.29 12.41 16.27 0.00 12.99

sp7.1 40.09 40.16 11.54 13.91 13.16 14.64 -0.46 13.95

sp6.1 40.44 39.76 12.92 11.40 10.65 16.12 0.46 11.07

sp5.2 40.14 39.99 13.28 11.83 11.08 15.03 0.46 11.76

average 40.23 40.03 12.24 12.67 11.87 15.32 0.09 12.57

STD 0.20 0.34 0.72 0.74 0.72 0.55 0.36 0.79
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Table 4.4: Temperature, relative humidity, applied loading angle and load at fracture of
the Brazilian disk specimens with ω < 0.

specimen no. ϑ (◦C) RH (%) ω (◦) Pc (N)

sp8.2 23.6 40.7 -2.1 9336.8

sp9.1 22.6 41.3 -2.2 9497.6

sp3.1 23.5 41.8 -2.2 9710.3

sp1.1 22.8 41.1 -2.6 9963.1

sp14.1 23.3 41.5 -2.7 9750.5

sp7.2 28.6 25.5 -4.1 9888.1

sp1.2 28.4 25.1 -4.9 8298.4

sp12.1 25.4 52.9 -5.3 9630.1

sp2.1 23.0 52.9 -5.9 9782.1

sp11.2 28.8 24.0 -5.9 9452.7

sp12.2 23.0 51.3 -9.2 7866.5

sp13.2 22.4 41.5 -9.5 8158.7

sp3.2 25.6 51.8 -9.7 8147.3

sp8.1 23.7 49.6 -10.1 8204.3

sp11.1 22.2 39.4 -10.1 8111.9

sp4.2 22.7 39.6 -12.5 8039.7

sp5.1 23.2 41.8 -12.9 7758.5

sp2.2 23.1 42.9 -13.1 7616.1

sp4.1 22.6 40.6 -13.2 8043.1

sp6.2 22.6 40.0 -13.4 8165.9

Table 4.5: Temperature, relative humidity, applied loading angle and load at fracture of
the Brazilian disk specimens with a delamination arrest hole and ω > 0.

specimen no. ϑ (◦C) RH (%) ω (◦) Pc (N)

sp10.1 23.4 54.8 1.7 7783.9

sp14.2 23.4 54.2 2.5 7969.8

sp10.2 23.4 55.2 2.7 7295.7

sp16.1 23.6 50.6 2.7 7614.5

sp15.1 23.5 55.8 4.0 8153.5

sp9.2 23.6 50.1 4.3 8034.9

sp15.2 23.7 54.6 4.7 8430.9

sp7.1 23.6 50.3 5.4 8690.5

sp6.1 23.6 51.7 9.9 7441.5

sp5.2 23.7 52.6 10.4 8331.3
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the end of the test was less than one hour. In Table 4.4, it may be observed that the

load at fracture is generally higher for small absolute values of the loading angles. It

should be noted that for specimen sp1.2, a low value of the fracture load was obtained

as compared to other specimens for similar loading angles. Although pores were detected

(via the Zeiss microscope) in specimen sp1.2, it was tested in order to quantify the effect

of porosity upon fracture toughness. Recall that the ASTM Standard D5528-13 (2014)

requires that the test conditions are such that the test temperature be 23± 3◦ C and the

RH be 50± 10%. In Table 4.4, it may be observed that for specimens sp7.2, sp1.2 and

sp11.2, the test temperature was above the recommended value, whereas the RH was

slightly below the recommended value. For specimens sp11.1 and sp4.2, the RH was

below the recommended value in the standard. For Table 4.5, testing conditions were

maintained according to the ASTM Standard D5528-13 (2014) recommendations.

4.4 Finite element analyses

All BD specimens were analyzed by means of the FE method using the ADINA (Bathe,

2011) software, with the geometric parameters listed in Tables 4.1 and 4.2. An example

of a three-dimensional FE model is presented in Fig. 4.7, where the FE model was used

in analyzing specimen sp11.2, for which ω = −5.9◦. The three-dimensional FE models

1�(c)

(a)

(b)

0�/90�

delamination

+45�/-45�

Figure 4.7: FE model used to analyze specimen sp11.2 containing 117,760 twenty noded

isoparametric, brick elements and 852,028 nodal points. (a) Isometric-view of the mesh,

(b) isometric-view of the composite strip mesh and (c) detailed front-view of one delami-

nation tip region.
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(a) (b) (c)

Figure 4.8: Detailed front-view of FE models of one delamination tip region of specimen

sp11.2 used in convergence study: (a) coarse mesh, (b) fine mesh and (c) finer mesh.

contained twenty noded isoparametric, brick elements. In order to model the square-

root singularity along the delamination front, quarter-point elements were used. The

oscillatory part of the singularity was not modeled. The material properties used to

characterize the plain woven plies with the yarn in the 0◦/90◦ and +45◦/-45◦ directions

are presented in Table 2.1. It may be noted that within the delamination region, a

symmetric mesh was generated, so that the left delamination tip, also shown in Figs. 4.7a

and 4.7b, is a mirror reflection of the right delamination tip, which is presented in detail

in Fig. 4.7c.

4.4.1 Convergence study

To examine convergence, a coarse, fine and finer mesh were used with the geometric

parameters of specimen sp11.2 in Table 4.1. The in-plane dimensions of the elements in

the vicinity of the delamination front were set to 1.1 · 10−4 × 1.1 · 10−4 m2, 5.5 · 10−5 ×
5.5 · 10−5 m2 and 2.75 · 10−5 × 2.75 · 10−5 m2, as shown in Figs. 4.8a, 4.8b and 4.8c,

respectively. In all meshes there were 20 elements along the delamination front, each

4.06 · 10−4 m thick. It has been shown that quarter-point, crack tip elements for which

the in-plane element geometry is square lead to the best results for homogenous materials

(Banks -Sills and Bortman, 1984). A ply group consisting of several plies of the same plain

woven material is assumed to serve as a single plain woven ply with the same material

properties as described above, with a total thickness of all plies in the ply group. Mesh

refinement was made in the regions where load or restraints were applied to obtain a better

load distribution. A maximum in-plane element aspect ratio of 1 × 11.5 throughout the

composite strip region was permitted away from regions of expected stress concentrations
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Table 4.6: Characteristics of the three meshes which were used in the convergence study
of the BD specimen.

mesh no. of elements no. of nodes element in-plain size no. of integration

near delamination front (m2) domains

coarse 107,040 774,636 1.1 · 10−4 × 1.1 · 10−4 2

fine 117,760 852,028 5.5 · 10−5 × 5.5 · 10−5 4

finer 130,560 944,416 2.75 · 10−5 × 2.75 · 10−5 5

(such as load application points, reactions, delamination front, etc.). Some characteristics

of the FE meshes which were used in the convergence study are given in Table 4.6.

The stress intensity factors were calculated along the delamination front of each mesh

by means of the three-dimensional M-integral, which was described in Section 3.2, and

were verified by means of the DE method, which was presented in Section 3.1. The

stress intensity factors obtained for the largest domain of each mesh as a function of the

normalized delamination front coordinate (x3/B) are shown in Fig. 4.9. Recall that the

dimensions of the complex in-plane stress intensity factor components are F×L−(3/2+iε),

where F and L represent force and length, respectively. The oscillatory parameter, ε,

depends upon the mechanical properties of both materials on either side of the interface

and for the investigated interface it is given in eq. (2.46). Both in-plane stress intensity

factor components, K1 and K2, have units of MPa
√
m ·m−iε and are shown, respectively,

in Figs. 4.9a and 4.9b. The dimensions of the out-of-plane stress intensity factor, KIII ,

are F×L−3/2 with units of MPa
√
m; it is presented in Fig. 4.9c.

Figure 4.9: Stress intensity factors calculated along the delamination front by means of

the three-dimensional M-integral for the largest domain of each FE mesh used to analyze

specimen sp11.2 (coarse, fine and finer meshes). (a) K1 in MPa
√
m · m−iε, (b) K2 in

MPa
√
m ·m−iε and (c) KIII in MPa

√
m.
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Table 4.7: Maximum percent difference (in absolute value) between the stress intensity
factors calculated for the fifth integration domain (reference) and domains 2, 3 and 4 of
the finer mesh shown in Fig. 4.8c.

percent difference

domain 2 domain 3 domain 4

K1 K2 KIII K1 K2 KIII K1 K2 KIII

0.051 0.719 0.241 0.019 0.221 0.059 0.008 0.045 0.012

The stress intensity factors obtained from the finer mesh and the M-integral served as

reference values and were used for comparison. In order to quantify the change in the

calculated stress intensity factors obtained for each mesh, a percent difference was defined,

which is given by

difference(%) =
K

(ch)
m −K

(ref)
m

K
(ref)
m

× 100 (4.8)

were m = 1, 2, III. In eq. (4.8), the superscripts (ch) and (ref) represent the examined

(checked) and base-line (reference) values, respectively. Demonstration of path indepen-

dence for the finer mesh (shown in Fig. 4.8c) may be concluded from Table 4.7, in which

the differences between the stress intensity factors obtained for the fifth (reference) and

other domains of integration (see Fig. 3.2) are presented. It should be noted that the

maximum percent difference shown in Table 4.7 occurred at different positions along the

delamination front. When comparison is performed at the same location along the delam-

ination front, the values obtained for the different integration domains appear to support

path independence.

In addition to Fig. 4.9, solution convergence is examined in Table 4.8, in which the differ-

ences between the stress intensity factors obtained for pairs of meshes are presented. For

each pair of meshes, the mesh which is more refined in the vicinity of the delamination

front serves as the reference (ref) in eq. (4.8). It should be noted that the maximum per-

cent difference shown in Table 4.8 occurred at different positions along the delamination

Table 4.8: Maximum percent difference (in absolute value) between the stress intensity
factors for pairs of meshes, along the delamination front, calculated for the largest inte-
gration domain of each mesh.

percent difference

meshes coarse and fine fine and finer

range K1 K2 KIII K1 K2 KIII

0.075 ≤ x3/B ≤ 0.925 0.077 0.774 0.644 0.028 0.158 0.278

0.025 ≤ x3/B ≤ 0.975 0.506 2.076 7.180 0.242 0.799 3.240
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front. It may be observed that convergence is obtained for both ranges of x3/B. Results

for x3/B = 0.025 and 0.975, that is for the domain in the outermost elements, deteriorate

as compared to the other domains. Recall that in the development of the first term of the

asymptotic stress and displacement fields, conditions of plane deformation were assumed

(Section 2.2). This assumption is common in cases of through cracks/delaminations, so

that the singularity related to body/medium free surface is not represented. Therefore,

the values calculated by means of the M-integral and the DE method at FE model outer

faces are inaccurate. Since the absolute value of the maximum percent difference within

the range of 0.075 ≤ x3/B ≤ 0.925 between the fine and the finer mesh is less than 0.3%,

it may be concluded that the fine mesh (typical side view of one delamination tip region

is shown in Fig. 4.8b) may be used in all FE models in this study.

4.4.2 Analysis of specimens

The results of the stress intensity factor components for specimen sp11.2 are shown in

Figs. 4.9a, 4.9b and 4.9c, in which K1, K2 and KIII are plotted, respectively, as a function

of the normalized delamination front coordinate x3/B. It may be observed that the

in-plane stress intensity factor components are symmetric with respect to specimen mid-

thickness (x3/B = 0.5), whereas the out-of-plane stress intensity factor is anti-symmetric.

This behavior of the stress intensity factors was observed in every analysis that was

performed for each BD specimen FE model within the group of the thirty BD specimens

that were tested. In order to resolve the complex units of the in-plane stress intensity

factor components, K1 and K2 in eq. (1.6), an arbitrary length parameter L̂ was used in

a similar manner to L denoted in eq. (1.7), so that

K̂ = K̂1 + iK̂2 = KL̂iε. (4.9)

The general expressions for the two phase angles, ψ̂ in eq. (1.12) and φ in eq. (1.14) with

L = L̂, remain the same. Also, the general expressions for the local interface energy

release rate Gi in eq. (1.17), the critical interface energy release rate Gic in eq. (1.18)

and the mode 1 critical energy release rate G1c in eq. (1.19), are used with L = L̂ in the

latter. For the particular case of a delamination between two tetragonal anisotropic elastic

materials where the interface is between a 0◦/90◦ and a +45◦/−45◦ balanced plain weave

(see Fig. 1.1b), the oscillatory parameter ε is defined in eq. (2.46) and the parameters H1

and H2 are given in eqs. (3.16); their values are listed in Table 4.9.

It should be noted that in this investigation the mechanical properties of the plain woven

ply with yarn in the 0◦/90◦-directions presented in Table 2.1 were rounded; for the Young’s

moduli Eii and the shear moduli Gij (for i, j = 1, 2, 3, no summation implied) only the

first significant digit after the decimal point was retained; whereas for Poisson’s ratios νij ,
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Table 4.9: Values of some parameters for the particular case of a delamination between
two tetragonal anisotropic elastic materials where the interface is between a 0◦/90◦ and
a +45◦/− 45◦ balanced plain weave.

ε H1 H2 D11 D22 D33 W12 = −W21

(GPa) (GPa) (1/GPa) (1/GPa) (1/GPa) (1/TPa)

0.00865 8.00 8.99 0.212 0.500 0.445 8.85

three digits after the decimal point were used for calculating the properties of each plain

weave. In Banks-Sills et al. (2013) and Ishbir (2014) many more significant figures were

used. Minor differences in the values of the interface delamination parameters, such as ε,

H1 and H2, between the two studies are observed. Values of the members of the matrices

D in eq. (2.20) and W in eq. (2.21) are also presented in Table 4.9.

The stress intensity factors were calculated by means of the three-dimensional M-integral

for each slice of elements within domain 4 (one element thick through the model thickness,

see Fig. 3.2d) along the delamination front of each specimen. Note that the delamination

front and the FE model thickness were divided into 20 equal slices. The normalized

in-plane stress intensity factors, K̂1 and K̂2, were calculated with a normalized length

parameter of L̂ = 100 µm. Based upon these results, the critical interface energy release

rate Gic using eq. (1.17), as well as the two phase angles, ψ and φ, were also calculated.

In Fig. 4.10, values of the critical interface energy release rate Gic obtained for various BD

specimens tested at different loading angles ω are plotted as a function of the normalized
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Figure 4.10: Critical interface energy release rate Gic as a function of the normalized

delamination front coordinate x3/B within the range of 0 ≤ x3/B ≤ 1 for different

loading angles ω.
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delamination front coordinate x3/B within the range of 0 ≤ x3/B ≤ 1. It may be

observed that the values of Gic through the thickness are nearly constant except at the

outer surfaces of the specimen. This contrasts with the DCB specimen which exhibited

parabolic behavior as presented in Fig. 13 of Banks-Sills et al. (2013). The results obtained

for each BD specimen next to its mid-thickness, where x3/B = 0.475, are presented in

Table 4.10.

Since the in-plane stress intensity factors are symmetric with respect to specimen mid-

thickness (x3/B = 0.5), their values are approximately that of x3/B = 0.475. The

Table 4.10: Results obtained for each BD specimen at x3/B = 0.475. The loading
angle is ω, and K̂1 and K̂2 are the in-plane normalized stress intensity factor components
calculated with the length parameter L̂ = 100 µm. The out-of-plane stress intensity factor
is KIII , Gic is the critical interface energy release rate, and ψ̂ and φ are the derived phase
angles.

specimen ω K̂1 K̂2 KIII Gic ψ̂ φ
number (◦) (MPa

√
m) (MPa

√
m) (MPa

√
m) (N/m) (rad) (rad)

sp8.2 -2.06 1.39 0.70 0.01 303.8 0.466 0.005
sp9.1 -2.23 1.39 0.74 0.01 310.8 0.489 0.006
sp3.1 -2.23 1.44 0.86 0.01 351.2 0.540 0.005
sp1.1 -2.64 1.43 1.27 0.01 456.6 0.728 0.005
sp14.1 -2.73 1.40 1.04 0.01 382.7 0.639 0.006

sp7.2 -4.10 1.33 1.48 0.01 497.7 0.839 0.006
sp1.2 -4.94 1.04 1.52 0.01 423.5 0.973 0.007
sp12.1 -5.27 1.12 2.12 0.02 719.1 1.087 0.006
sp2.1 -5.86 1.13 2.12 0.02 718.5 1.082 0.007
sp11.2 -5.90 1.10 2.14 0.02 722.8 1.096 0.007

sp12.2 -9.21 0.56 2.31 0.02 709.3 1.332 0.008
sp13.2 -9.45 0.58 2.49 0.02 816.1 1.341 0.008
sp3.2 -9.67 0.58 2.49 0.02 817.3 1.340 0.008
sp8.1 -10.10 0.54 2.64 0.02 910.1 1.368 0.008
sp11.1 -10.11 0.56 2.46 0.02 794.3 1.346 0.008

sp4.2 -12.46 0.25 2.73 0.02 942.1 1.480 0.009
sp5.1 -12.94 0.30 2.70 0.02 919.6 1.462 0.008
sp2.2 -13.07 0.25 2.70 0.02 918.6 1.478 0.009
sp4.1 -13.20 0.21 2.81 0.03 990.4 1.497 0.009
sp6.2 -13.42 0.23 2.85 0.03 1022.8 1.489 0.008

sp10.1 1.72 1.19 -1.08 -0.01 322.9 -0.738 -0.004
sp14.2 2.50 1.18 -0.65 0.00 225.8 -0.504 0.000
sp10.2 2.69 1.07 -1.01 0.00 271.4 -0.756 -0.003
sp16.1 2.74 1.08 -1.01 0.00 272.4 -0.752 -0.003

sp15.1 4.03 1.09 -1.67 -0.01 494.1 -0.993 -0.004
sp9.2 4.30 1.11 -1.48 -0.01 427.8 -0.925 -0.003
sp15.2 4.67 1.16 -1.96 -0.01 647.6 -1.035 -0.005
sp7.1 5.35 0.95 -2.48 -0.02 880.1 -1.204 -0.006

sp6.1 9.89 0.56 -2.62 -0.02 898.9 -1.361 -0.008
sp5.2 10.43 0.60 -2.83 -0.02 1048.3 -1.362 -0.008
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same behavior occurs for the value of the in-plane mode mixity angle ψ̂. The critical

interface energy release rate Gic calculated from eq. (1.17) is also symmetric with respect

to specimen mid-thickness.

From Table 4.10 and Fig. 4.10, it may be observed that the critical interface energy release

rate Gic generally increases with |ω|, as well as the absolute value of the in-plane mode

mixity angle |ψ̂|. It should be noted that the Gic value of specimen sp1.2 is exceptionally

low. Perhaps this occurred because this specimen was found to have pores in it. Thus,

its value was excluded from fracture criterion determination.

It may be noted that for specimens sp5.2 and sp6.1, in which ω > 9◦, an insignificant

amount of interpenetration of the delamination faces was observed at the outer surfaces

of specimens where x3/B = 0, 1. The interpenetration occurred for r/a ≤ 5% of the

distance from the delamination front, where θ = ±π and r is shown in Fig. 1.1b, and a

denotes the half delamination length. For all other specimens, no interpenetration of the

delamination faces was observed throughout the model thickness.

4.5 Fracture criteria

A two-dimensional energy-based fracture toughness criterion was presented in Banks-Sills

and Ashkenazi (2000) for a crack along a bimaterial interface between two dissimilar linear

elastic, isotropic and homogeneous materials. In that study, other fracture criteria, such

as the critical hoop stress and critical shear stress, were examined by means of best-fit

comparisons with obtained experimental data from tests on glass//epoxy interface BD

specimens. The criterion that was well suited to the experimental data and required

determination of a minimum number of free parameters is given as

Gic = G1c

(
1 + tan2 ψ̂

)
(4.10)

where

G1c =

[
avg(K̂1)

]2

H1

=
K̂2

1c

H1

, (4.11)

K̂1 is given in eq. (4.9), H1 is given in eq. (3.16)1 and ψ̂ is given in eq. (1.12). The only

free parameter is the normalization length L̂. To obtain K̂1c, values of K̂1 from each test

were plotted as a function of K̂2 as shown in Fig. 4.11a. This criterion was extended in

Banks-Sills et al. (2005) to the case of a delamination along the 0◦//90◦ interface; it was

further extended to a three-dimensional energy-based fracture criterion in Banks-Sills et

al. (2006) for a delamination along the +45◦// − 45◦ interface. In both cases an MD

laminate was fabricated from UD plies.
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Figure 4.11: Schematic plot of experimental data set in the K̂1-K̂2 plane: (a) K̂1 is

constant for all test specimens, and (b) K̂1 is nearly constant until K̂2 = K̂♯
2, then

reduction in mode 1 begins.

It may be noted that the criterion given in eqs. (4.10) and (4.11) was also presented in

Wang (1997), where an additional approach was taken for experimental data sets with a

behavior schematically shown in Fig. 4.11b. Several pairs of materials were considered in

Wang (1997) (aluminum//epoxy, steel//epoxy, brass//epoxy interfaces), in which some

of the experimental results (obtained from BD and asymmetrical DCB tests) were found

in the literature. It was found that the data fit K̂1 = K̂1c for values of K̂2 less than some

value say K̂♯
2, but for K̂2 greater than that value

K̂2 = βK̂1 + K̂2c (4.12)

fit the experimental data as shown in Fig. 4.11b. In eq. (4.12), K̂2c is the critical value of

K̂2 obtained when K̂1 = 0 and β is the slope of the oblique line. Combining the two lines

in Fig. 4.11b, a fracture criterion may be written as

K̂1 = min

(
K̂1c,

K̂2 − K̂2c

β

)
. (4.13)

Thus, it is possible to write a two-dimensional energy based criterion, similar to the

one presented in eq. (4.10), with the new definition of K̂1 in eq. (4.13) substituted into

eq. (4.11). It may be noted that the data presented in Wang (1997) in deriving eq. (4.13)

included only data for which K̂2 was positive. Here, K̂2 > 0 for negative loading angles,

that is ω < 0; K̂2 < 0 for positive loading angles, ω > 0.

The two-dimensional fracture criterion in eq. (4.10) may be extended to three-dimensions

as

Gic = G1c

(
1 + tan2 ψ̂

) (
1 + tan2 φ

)
(4.14)
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Figure 4.12: The stress intensity factor K̂2 versus K̂1 as described in eq. (4.17) for L̂ =

100 µm.

where G1c is defined in eq. (4.11). This criterion was presented in Banks-Sills et al. (2006)

and in Banks-Sills et al. (2010). It is also possible to use K̂1 in eq. (4.13) in place of K̂1c

in eq. (4.11). Therefore, eq. (4.14) may be rewritten as

Gic = G1

(
1 + tan2 ψ̂

) (
1 + tan2 φ

)
, (4.15)

where G1 is defined as

G1 =
K̂2

1

H1

, (4.16)

with the new definition of K̂1 in eq. (4.13).

Use of the same approach presented in eq. (4.13) results in the following expression for

K̂1 for positive and negative K̂2 where

K̂1 =





min

(
K̂

(N)
1 ,

K̂2 − K̂
(N)
2c

β(N)

)
for K̂2 > 0

min

(
K̂

(P )
1 ,

K̂2 − K̂
(P )
2c

β(P )

)
for K̂2 < 0.

(4.17)

In Fig. 4.12, eq. (4.17) is plotted for a normalized length parameter L̂ = 100 µm. In

eq. (4.17) and Fig. 4.12, the superscripts (N) and (P ) represent the sign of the loading

angle applied during testing. The data points shown in Fig. 4.12 are projected onto

the K̂1 - K̂2 plane for KIII = 0. Recall that for each BD specimen, 20 (K̂1, K̂2) points
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Table 4.11: Parameters of eq. (4.17) obtained for L̂ = 100 µm.

ω K̂1 K̂2 β
(MPa

√
m) (MPa

√
m)

ω < 0 K̂
(N)
1 = 1.46 K̂

(N)
2c = 2.90 β(N) = −0.67

ω > 0 K̂
(P )
1 = 1.14 K̂

(P )
2c = −3.25 β(P ) = 0.97

were obtained along the delamination front. The value of K̂
(N)
1 was determined as the

average value of all K̂1 obtained at failure from specimens sp8.2, sp9.1, sp3.1, sp1.1,

sp14.1, where ω ≈ −2◦, and sp7.2, where ω ≈ −4◦. In the same manner, the value of

K̂
(P )
1 was determined by using the K̂1 data obtained at failure from specimens sp10.1,

sp14.2, sp10.2, sp16.1, where ω ≈ +2◦, and sp15.1 and sp9.2, where ω ≈ +4◦.

The value of K̂
(N)
2c was determined from the intersection point between the oblique line

obtained by means of a linear regression applied to the rest of the (K̂1, K̂2) points, where

ω ≈ −5◦, − 10◦, − 13◦, and the vertical axis, where K̂1 = 0. In a similar manner, the

value of K̂
(P )
2c was determined. The values of β(N) and β(P ) were determined by calculating

the slopes of the oblique lines from linear regression. The obtained parameters determined

for L̂ = 100 µm are listed in Table 4.11. Since specimen sp1.2 was found to contain pores,

it was excluded from determination of the parameters in eq. (4.17). Nevertheless, these

points are shown in Fig. 4.12 and are surrounded by a dashed ellipse.

The fact that K̂
(P )
1 6= K̂

(N)
1 motivates consideration of another value of L̂ for which K̂

(N)
1 =

K̂
(P )
1 ≡ K̂1c. If the value of L̂ is chosen to be 2, 900 m, K̂1c is found as 1.30 MPa

√
m, as

shown in Fig. 4.13. Indeed, L̂ = 2, 900 m is an unrealistic physical length scale. Thus, the
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Figure 4.13: The stress intensity factor K̂2 versus K̂1 as described in eq. (4.17) for L̂ =

2, 900 m.
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Figure 4.14: The stress intensity factor K̂2 versus K̂1 as described in eq. (4.18) for L̂ =

100 µm.

approach presented in the work of Mega and Banks-Sills (2019) is used here. In that study,

a fracture toughness criterion was obtained for a delamination along an MD composite

with an interface between a UD ply with fibers in the 0◦-direction and a plain, balanced

woven ply with tows in the +45◦/ − 45◦-direction. According to Mega and Banks-Sills

(2019), another segment within the range of K̂
(P )
1 ≤ K̂1 ≤ K̂

(N)
1 in the K̂1-K̂2 plane

should be introduced, so that

K̂1 =





min

[
min

(
K̂

(N)
1 ,

K̂2 − I

S

)
,
K̂2 − K̂

(N)
2c

β(N)

]
for K̂2 > 0

min

[
max

(
K̂

(P )
1 ,

K̂2 − I

S

)
,
K̂2 − K̂

(P )
2c

β(P )

]
for K̂2 < 0.

(4.18)

This criterion is shown in Fig. 4.14. In eq. (4.18), the intercept and slope of the new

segment/line are denoted by I and S, respectively, and found to be I = −5.22 MPa
√
m

and S = 4.02. The new segment, branch number 3, was determined by means of lin-

ear interpolation between the two known points, which are
(
K̂

(N)
1 ,min

(
K̂

(N)
2

))
and

(
K̂

(P )
1 ,max

(
K̂

(P )
2

))
, in the K̂1-K̂2 plane. It should be noted that the minimum abso-

lute values of K̂
(N)
2 and K̂

(P )
2 were determined based upon the (K̂1, K̂2) data of the BD

specimens which were employed in the derivation of K̂
(N)
1 and K̂

(P )
1 , respectively. For

a normalizing length parameter of L̂ = 100 µm, those values of K̂2 were found to be

K̂
(N)
2 = 0.66 MPa

√
m and K̂

(P )
2 = −0.65 MPa

√
m, respectively. The point of intersection
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between the introduced straight line and the K̂1-axis (where K̂2 = 0) determines the

value of K̂1c, as may be seen in Fig. 4.14, where it was obtained as K̂1c = 1.30 MPa
√
m.

Coincidentally, this is the same value as that for the criterion shown in Fig. 4.13.

As may be seen in Figs. 4.12 through 4.14, there is much scatter in the data about the

criteria. To employ such criteria for a structure fabricated from this laminate with a

straight through delamination as that considered here, one calculates the stress intensity

factors K̂1, K̂2 and KIII . Neglecting KIII , if the points (K̂1, K̂2) are within the criterion,

one may assume that catastrophic failure will not occur. If the points are outside the

criterion, then failure is expected. For all of the criteria, considering each specimen

individually, it was observed that all the (K̂1, K̂2) points of specimens sp6.2, sp8.1,

sp10.1 and sp14.2 are outside the failure criteria, where failure is assumed to occur.

However, all data points of specimens sp12.2, sp6.1, sp10.2, sp15.1 and sp16.1 are

inside the criteria, where failure is unexpected. For all other specimens, considering each

specimen individually, it was observed that the (K̂1, K̂2) points along the delamination

front cut through the failure curve. It is postulated that once some of the points along the

delamination front are critical, the delamination will propagate carrying the remainder of

the points to failure. The specimens for which all points are within the failure criterion,

are a motivating factor to carry out a statistical analysis. Later, a three-dimensional

criterion will be treated, in which the values of KIII are also considered.

In Banks-Sills (2015), two statistical models, the t-distribution for statistical intervals

(Whitmore, 1986; Luko and Neubauer, 2011) and the z-variate for determination of a

probability and confidence interval (Natrella, 1963), were employed for the case of 10%

probability of unexpected failure. These statistical tools were applied to different bima-

terial interfaces for which the BD specimen with delamination/crack along an interface

was introduced. It should be noted that for each case of a bimaterial interface presented

in Banks-Sills (2015), the statistical analyses were imposed upon the average value of

G1c in eq. (4.11). It was shown in Banks-Sills (2015) that a failure curve determined by

means of the z-variate model is more conservative than that obtained by means of the

t-distribution for all examined bimaterial interfaces. Thus, it is proposed here to apply

the z-variate probability analysis to the criterion given in eq. (4.18), with some required

adaptations.

Since in this investigation K̂1 in eq. (4.18) depends upon K̂2, unlike the cases presented in

Banks-Sills (2015) where K̂1c was found to be constant for all values of K̂2, the procedure

must be extended. For simplicity, an auxiliary right-hand coordinate system may be de-

fined, as shown schematically in Fig. 4.15, so that the experimental data may be described

by both K̂1-K̂2 and K̂
′

1-K̂
′

2 axes. For the region where K̂2 < K̂♯
2, as shown in Fig. 4.15,

K̂1 is nearly constant in the K̂1-K̂2 plane, whereas for the region where K̂2 > K̂♯
2, K̂

′

1 is

nearly constant in the K̂
′

1-K̂
′

2 plane. The values of these constants are required. To this
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Figure 4.15: Schematic plot of experimental data set for K̂2 > 0 in the K̂1-K̂2 plane and

in the auxiliary K̂
′

1-K̂
′

2 plane: K̂1 is nearly constant until K̂2 = K̂♯
2, then K̂

′

1 is nearly

constant.

end, it may be seen that the slope of the K̂
′

2-axis is the same as the slope of the oblique

criterion line, namely, β(N). Hence, the relationship between the angle of rotation θ(N),

which is shown in Fig. 4.15, and the slope of the oblique line β(N) is given by

β(N) = − cot θ(N) for K̂2 > K̂♯
2 . (4.19)

For K̂2 < 0,

β(P ) = cot θ(P ) for K̂2 < K̂♯
2 , (4.20)

where θ(P ) is the rotation angle of the K̂
′

1-K̂
′

2-axes for K̂2 < 0. Rotation of the K̂1-

K̂2 coordinate system to the K̂
′

1-K̂
′

2 coordinate system, for K̂2 both positive and negative,

results in the following expressions

{
K̂

′

1

K̂
′

2

}
=






[
cos θ(N) sin θ(N)

− sin θ(N) cos θ(N)

]{
K̂1

K̂2

}
for K̂2 > 0

[
cos θ(P ) − sin θ(P )

sin θ(P ) cos θ(P )

]{
K̂1

K̂2

}
for K̂2 < 0.

(4.21)

Using the relationships in eqs (4.19) and (4.20), it may be shown that

{
K̂

′

1

K̂
′

2

}
=





1√
1 + β(N)2

[
−β(N) 1

−1 −β(N)

]{
K̂1

K̂2

}
for K̂2 > 0

1√
1 + β(P )2

[
β(P ) −1

1 β(P )

]{
K̂1

K̂2

}
for K̂2 < 0.

(4.22)

The reader may recall that β(N) < 0 and β(P ) > 0.
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Table 4.12: Parameters of eq. (4.23) obtained for L̂ = 100 µm.

K̂1 N K s K̂∗

1 n
(MPa

√
m) (MPa

√
m) (MPa

√
m)

K̂
′(N)
1 = 2.40 260 1.42 0.08 K̂

′(N)∗
1 = 2.29 18

K̂
(N)
1 = 1.46 120 1.50 0.07 K̂

(N)∗
1 = 1.35 6

K̂
(P )
1 = 1.14 120 1.50 0.06 K̂

(P )∗
1 = 1.04 8

K̂
′(P )
1 = 2.33 80 1.55 0.11 K̂

′(P )∗
1 = 2.16 4

For a normalizing length parameter of L̂ = 100 µm, the values of K̂
′(N)
1 and K̂

′(P )
1 are

obtained. For K̂
′(N)
1 , the K̂1 and K̂2 values of data points from specimens sp12.1, sp2.1,

sp11.2, sp12.2, sp13.2, sp3.2, sp8.1 and sp11.1 were substituted into eq. (4.22)1

to determine the value of K̂
′

1. These were averaged to obtain K̂
′(N)
1 = 2.40 MPa

√
m.

Similarly, the value of K̂
′(P )
1 was found as 2.33 MPa

√
m, from specimens sp15.2, sp7.1,

sp6.1 and sp5.2. Use was made of eq. (4.22)2. These values are shown in column 1 of

Table 4.12. Values found earlier for K̂
(N)
1 and K̂

(P )
1 in Table 4.11 are also displayed in

Table 4.12.

In a similar manner to that presented in Banks-Sills (2015), where a reduced value of

G1c was introduced, the value of K̂
(j)
1 for j = N,P in eq. (4.18) is reduced by a factor

proportional to its standard deviation s given as

K̂
(j)∗
1 = K̂

(j)
1 −Ks. (4.23)

In eq. (4.23), K̂
(j)∗
1 is the reduced value of K̂

(j)
1 in the K̂1-K̂2 coordinate systems, for both

positive and negative values of K̂2. In the auxiliary K̂
′

1-K̂
′

2 coordinate systems, a reduced

value of K̂
′(j)
1 is denoted by K̂

′(j)∗
1 . It may be quantified in a similar manner to that

expressed in eq. (4.23). The statistical factor K is determined according to the statistical

model used in the probability analysis calculation. For the z-variate model,

K ≃ |zP |+
√
z2P − ab

a
(4.24)

where

a = 1−
z2γ

2(N − 1)
and b = z2P −

z2γ
N
. (4.25)

The number of data points/samples is denoted by N , z is the standard variate and

the subscripts P and γ in eqs. (4.24) and (4.25) represent probability and confidence,

respectively. For the case of only a 10% probability that a failed (K̂1, K̂2) data point will

be obtained within the safe zone, with a confidence of 95%, one may choose P = 0.1 and

γ = 0.95. Consequently, zP = z0.1 = −1.2816 and zγ = z0.95 = 1.6448 (Anderson et al.,

2015). The values of the z-variate parametres used in the statistical analysis, are detailed



90

✌✞☛ (MPa �)

✌✞✁(MPa �)

✂✄=100 ☎✆
✌✞✁✝

✟✠✡☞
✒✍✎

✌✞☛✝

✒✏✎

✌✞✁
✍ ✑

✌✞✁
✏ ✑

✓ ✔ ✕✖✗

✓ ✔ ✕✘✗

✓ ✔ ✕✙✚✗

✛ ✜ ✢✣✤✥

✓ ✔ ✖✗

✓ ✔ ✘✗

✓ ✔ ✙✚✗

✌✞✁

✦✧★

✌✞✁

✒✏✎ ✟✠✁✝
✑

✟✠✡☞
✏ ✑

✌✞☛✝
✍ ✑

Figure 4.16: The stress intensity factor K̂2 versus K̂1 as described in eq. (4.18) and the

reduced failure curve based upon eq. (4.26) for a 10% probability of unexpected failure

with a 95% confidence; both for L̂ = 100 µm.

in Table 4.12. For each group of specimens in a calculation, the sample number N is

presented in column 2. Using eqs. (4.24) and (4.25), values of K are found and are given

in column 3 of Table 4.12. The standard deviation s, for each average value in column

1, is presented in column 4 of Table 4.12. By employing eq. (4.23), the reduced values

of K̂
(j)∗
1 and K̂

′(j)∗
1 may be calculated. Those values are also presented in Table 4.12, for

L̂ = 100 µm.

Based upon the reduced values obtained for K̂
(j)∗
1 and K̂

′(j)∗
1 and while using the proper

transformation (rotation) between the K̂
′

1-K̂
′

2 coordinate systems and the K̂1-K̂2 coordi-

nate system, which may be retrieved from eqs. (4.22), the reduced fracture criterion of

eq. (4.18) may be determined as

K̂1 =






min

[
min

(
K̂

(N)∗
1 ,

K̂2 − I∗

S∗

)
,
K̂2 − K̂

(N)∗
2c

β(N)

]
for K̂2 > 0

min

[
max

(
K̂

(P )∗
1 ,

K̂2 − I∗

S∗

)
,
K̂2 − K̂

(P )∗
2c

β(P )

]
for K̂2 < 0,

(4.26)

which is plotted as the dashed curve in Fig. 4.16 for L̂ = 100 µm.
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Table 4.13: Additional parameters used in the determination of the fracture criteria (be-
fore and after the statistical analysis) presented in Fig. 4.16 and obtained for L̂ = 100 µm.

statistical K̂1c I S K̂
(N)
2c K̂

(P )
2c K̂

(N)♯
2 K̂

(P )♯
2

analysis (MPa
√
m) (MPa

√
m) (MPa

√
m) (MPa

√
m) (MPa

√
m) (MPa

√
m)

before 1.30 -5.22 4.02 2.90 -3.25 1.91 -2.15

after (with * ) 1.20 -5.10 4.27 2.76 -3.01 1.86 -2.00

In eq. (4.26), K̂
(N)∗
2c and K̂

(P )∗
2c are the reduced values of K̂

(N)
2c and K̂

(P )
2c , respectively, on

branches 1 and 5. The value of K̂
(N)∗
2c was determined from the intersection point between

the reduced oblique line, obtained by means of K̂
′(N)∗
1 , and the vertical axis, where K̂1 = 0,

as may be observed in Fig. 4.16. In a similar manner, the value of K̂
(P )∗
2c was determined.

In eq. (4.26), the intercept and slope of the reduced introduced segment, the dashed line

denoted as branch 3 in Fig. 4.16, was determined. A line was drawn between the two

known points,
(
K̂

(N)∗
1 ,min

(
K̂

(N)
2

))
and

(
K̂

(P )∗
1 ,max

(
K̂

(P )
2

))
. For L̂ = 100 µm, their

values were found to be I∗ = −5.10 MPa
√
m and S∗ = 4.27. The point of intersection

between the dashed branch 3 in Fig. 4.16 and the K̂1-axis (where K̂2 = 0) determines the

value of K̂∗
1c, as may be seen in Fig. 4.16, where it was obtained as K̂∗

1c = 1.20 MPa
√
m.

The values of some additional parameters, which were used in the determination of the

fracture criteria shown in Fig. 4.16, before and after the statistical analysis, are listed in

Table 4.13, for L̂ = 100 µm. While neglecting specimen sp1.2, from the dashed curve in

Fig. 4.16, there is a 10% probability with a 95% confidence that the next data point will

be within this curve and still the specimen will fail unexpectedly. The number of (K̂1, K̂2)

data points within the reduced failure curve is denoted by n and is shown in column 6

of Table 4.12. Indeed, it may be observed (also in Table 4.12) that less than 6.2% of the

(K̂1, K̂2) data points are within the reduced fracture criterion given in eq. (4.26). Thus, it

may be concluded that the probability analysis that was carried out reduced the chance

for an unexpected failure. It may be assumed that the region within the reduced fracture

criterion is safe with a 90% probability with a 95% confidence. It should be noted that

there is no specimen for which all points along the delamination front are within the

statistically obtained failure curve.

Next, a three-dimensional failure surface is developed in terms of the critical interface

energy release rate Gic given in eq. (4.15), with K̂1 in eq. (4.18) substituted in eq. (4.16)

and the phase angles ψ̂ and φ defined in eqs. (1.12) and (1.14), respectively, with L = L̂.
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The criterion in eq. (4.18) may be expressed in terms of K̂1 and the phase angle ψ̂ as

K̂1 =





min

(
K̂

(N)
1 ,

K̂
(N)
2c

tan ψ̂ − β(N)

)
for ψ̂(N) ≤ ψ̂

I

tan ψ̂ − S
for ψ̂(P ) ≤ ψ̂ ≤ ψ̂(N)

min

(
K̂

(P )
1 ,

K̂
(P )
2c

tan ψ̂ − β(P )

)
for ψ̂ ≤ ψ̂(P ).

(4.27)

In eq. (4.27), the values of K̂
(j)
1 , K̂

(j)
2c and β(j) for j = N,P may be found in Table 4.11,

whereas the values of K̂1c, I and S may be found in Table 4.13. The phase angles ψ̂(j)

may be obtained as

ψ̂(j) = arctan

(
I

K̂
(j)
1

+ S

)
for j = N,P. (4.28)

The reduced criterion in eq. (4.26) also may be expressed in terms of K̂1 and ψ̂. To

this end, the relations as presented in eq.(4.28) are rewritten in terms of the reduced

parameters I∗, S∗ and K̂
(j)∗
1 . These are substituted into eq. (4.26) to obtain

K̂1 =





min

(
K̂

(N)∗
1 ,

K̂
(N)∗
2c

tan ψ̂ − β(N)

)
for ψ̂(N)∗ ≤ ψ̂

I∗

tan ψ̂ − S∗
for ψ̂(P )∗ ≤ ψ̂ ≤ ψ̂(N)∗

min

(
K̂

(P )∗
1 ,

K̂
(P )∗
2c

tan ψ̂ − β(P )

)
for ψ̂ ≤ ψ̂(P )∗.

(4.29)

In eq. (4.29), the values of β(j) for j = N,P may be found in Table 4.11, whereas the

values of K̂
(j)∗
1 are listed in Table 4.12. The values of K̂∗

1c, K̂
(j)∗
2c , I∗ and S∗ may be found

in Table 4.13.

The criterion in eq. (4.27) may be rewritten in terms of the in-plane phase angle ψ̂, so

that each of the branches in Fig. 4.16 is explicitly given as

K̂1 =





K̂
(N)
2c

tan ψ̂ − β(N)
for ψ̂(N)♯ ≤ ψ̂ < π/2

K̂
(N)
1 for ψ̂(N) ≤ ψ̂ ≤ ψ̂(N)♯

I

tan ψ̂ − S
for ψ̂(P ) ≤ ψ̂ ≤ ψ̂(N)

K̂
(P )
1 for ψ̂(P )♯ ≤ ψ̂ ≤ ψ̂(P )

K̂
(P )
2c

tan ψ̂ − β(P )
for − π/2 < ψ̂ ≤ ψ̂(P )♯,

(4.30)
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Table 4.14: Values of ψ̂ used in the determination of the fracture criteria in eqs. (4.30)
and (4.32) before and after the statistical analysis, respectively, obtained for L̂ = 100 µm.

statistical ψ̂(P )♯ ψ̂(P ) ψ̂(N) ψ̂(N)♯

analysis (rad) (rad) (rad) (rad)

before -1.08 -0.52 0.42 0.92

after (with * ) -1.09 -0.55 0.46 0.94

where

ψ̂(j)♯ = arctan

(
K̂

(j)
2c

K̂
(j)
1

+ β(j)

)
= arctan

(
K̂

(j)♯
2

K̂
(j)
1

)
for j = N,P. (4.31)

In eq. (4.31), K̂
(j)♯
2 for j = N,P are the positive and negative values of K̂2, respectively,

for which a reduction in mode 1 begins. Such behavior of the experimental data sets

is schematically shown in Fig. 4.11b for positive values of K̂2, where K̂
(N)♯
2 = K̂♯

2. The

values of K̂
(j)♯
2 for j = N,P may be found in Table 4.13. In a similar manner, eq. (4.29)

is rewritten to obtain

K̂1 =





K̂
(N)∗
2c

tan ψ̂ − β(N)
for ψ̂(N)♯∗ ≤ ψ̂ < π/2

K̂
(N)∗
1 for ψ̂(N)∗ ≤ ψ̂ ≤ ψ̂(N)♯∗

I∗

tan ψ̂ − S∗
for ψ̂(P )∗ ≤ ψ̂ ≤ ψ̂(N)∗

K̂
(P )∗
1 for ψ̂(P )♯∗ ≤ ψ̂ ≤ ψ̂(P )∗

K̂
(P )∗
2c

tan ψ̂ − β(P )
for − π/2 < ψ̂ ≤ ψ̂(P )♯∗,

(4.32)

where

ψ̂(j)♯∗ = arctan

(
K̂

(j)∗
2c

K̂
(j)∗
1

+ β(j)

)
= arctan

(
K̂

(j)♯∗
2

K̂
(j)∗
1

)
for j = N,P. (4.33)

In eq. (4.33), K̂
(j)♯∗
2 for j = N,P is the value of K̂2 at the intersection between the lines

K̂2 = K̂1β
(j) + K̂

(j)∗
2c and K̂1 = K̂

(j)∗
1 . It may be noted that |K̂(j)♯∗

2 | < |K̂(j)♯
2 |, however,

|K̂(j)∗
1 | is sufficiently smaller than |K̂(j)

1 |, so that |ψ̂(j)♯∗| > |ψ̂(j)♯|. The important values

of ψ̂ for both the original and statistical curves may be found in Table 4.14.

In Fig. 4.17a, the curves of K̂1 in eqs. (4.30) and (4.32) as a function of the in-plane

phase angle ψ̂ are plotted, for a normalizing length parameter of L̂ = 100 µm. The

mode 1 energy release rate G1 in eq. (4.16), with the new definitions of K̂1 in eqs. (4.30)

and (4.32) substituted into eq. (4.16), are presented in Fig. 4.17b as a function of ψ̂ for
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Figure 4.17: (a) K̂1 from eqs. (4.30) and (4.32) as a function of the in-plane phase angle

ψ̂, and (b) the derived mode 1 energy release rate G1 in eq. (4.16) versus ψ̂ (L̂ = 100 µm).

L̂ = 100 µm. Recall that since specimen sp1.2 was found to have pores, its data points

were excluded from the determination of the parameters in eq. (4.18). Thus, they are also

excluded from the determination of K̂1 and G1 versus ψ. Nevertheless, these points are

shown in Figs. 4.17a and 4.17b and are surrounded by an ellipse.

Based upon the relationship between K̂1 and K̂2 in eq. (4.18), and the definitions of the in-

plane mode mixity angle ψ̂ in eq. (1.12) and the mode 1 energy release rate G1 in eq. (4.16),

with the new definition of K̂1 in eq. (4.30) substituted into eq. (4.16), quantification of the

in-plane energy release rate Gi−2D may be made, as presented in Fig. 4.18. In Fig. 4.18,

the values of the energy release rate calculated from 20 slices, one element thick, along

the delamination front of each BD specimen presented in Table 4.10 are projected onto

the Gi, ψ̂-plane, where KIII = φ = 0. As may be observed, the failure curve in eq. (4.15)

with φ = 0, and K̂1 in eq. (4.30) substituted into eq. (4.16), fits well the in-plane energy

release rate data calculated from eq. (1.17) with KIII = 0 and the (K̂1, K̂2) data of the

BD specimens at failure. Also, it may be observed in Fig. 4.18 that there is scatter about

this solid curve and that the values of the in-plane energy release rate of specimen sp1.2,

shown with an ellipse, are below the 2D failure curve at a location which is supposed to

be safe from failure.

The statistically obtained Gi−2D failure curve is also plotted in Fig. 4.18 as the dashed

curve, which was obtained by using eq. (4.15) with φ = 0 and K̂1 in eq. (4.32) substituted

into eq. (4.16). While ignoring specimen sp1.2, it may be observed that less than 6.2%

of the (K̂1, K̂2) data points, a total of 36 points, are below the statistical failure curve,

which is based upon the statistically obtained fracture criterion given in eq. (4.32). For
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Figure 4.18: The in-plane energy release rate Gi−2D(ψ̂) for L̂ = 100 µm, given in eq. (4.15)

with φ = 0

.

each specimen, all data from points along the delamination front or some data is above

the dashed curve, implying that failure has taken place.

It should be noted that there are materials which are L̂ sensitive, such as the glass/epoxy

pair in Banks-Sills et al. (1999); but the current pair of materials was not. When compar-

ing the value obtained for G1c with L̂ = 0.1 mm, 0.5 mm, 1 mm and 10 mm, G1c changes

by a maximum of 1% for L̂ = 10 mm as compared to that obtained with L̂ = 0.1 mm.

This indicates that this material pair is not sensitive to changes in L̂. It is also possible to

examine other quantities, such as K̂
(N)
2c , K̂

(N)
1 , K̂

(P )
1 , K̂

(P )
2c and K̂1c. A maximum percent

difference of 4% was obtained for K̂
(P )
1 calculated with L̂ = 10 mm as compared to that

calculated with L̂ = 0.1 mm; lower percent of differences were obtained for the other

quantities.

The three-dimensional criterion in eq. (4.15), with K̂1 in eq. (4.30) substituted into

eq. (4.16) and the phase angles ψ̂ and φ defined in eqs. (1.12) and (1.14), respectively,

with L = L̂, is plotted; several views are shown in Fig. 4.19. The (Gic, ψ̂, φ) data of the BD
specimens at failure are also shown in Fig. 4.19. For the criterion presented in Fig. 4.19,

considering each specimen individually, it was observed that not all of the (Gic, ψ̂, φ) points
along the delamination front are above the criterion, in the failure region. It was found

that all data points of specimens sp6.2, sp8.1, sp10.1 and sp14.2 are above the failure

surface, where failure is assumed to occur, as expected. All data points of specimens

sp12.2, sp6.1, sp10.2, sp15.1 and sp16.1 are below the surface, in the safe zone; this

is considered as scatter in experimental data. For all other specimens, the data points
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Figure 4.19: Different views of the three-dimensional failure surface obtained for a delam-

ination along an interface between a plain woven fabric with yarn in the 0◦/90◦-directions

and in the +45◦/− 45◦-directions (L̂ = 100 µm).

cut through the failure surface. Recall, that it is postulated that once some of the points

along the delamination front are critical, the delamination will propagate carrying the

remainder of the points to failure.

It may be noted that for each BD specimen, the interface energy release rate related to the

in-plane stress intensity factors, Gi−2D, is dominant throughout the specimen thickness.

Its contribution to the total and critical interface energy release rate Gic, which was

found to be nearly constant throughout the specimen thickness in Fig. 4.10, is significant;

varying from 100% at the specimen mid-thickness (where KIII = φ = 0) to more than

93% at x3/B = 0.075 and 0.925, which are very close to the specimen outer surfaces.

For all specimens, the contribution of Gi−2D to Gic at specimen outer surfaces, where

x3/B = 0 and 1, was found to be greater than 84.3%. Thus, it is concluded that Gi−2D

governs the failure of the examined BD specimens.

A statistically obtained three-dimensional failure surface may be generated from the three-

dimensional criterion in eq. (4.15), while substituting the statistically obtained fracture

criterion given in eq. (4.32) into eq. (4.16). This failure surface is plotted with different

views shown in Fig. 4.20. While considering each specimen individually, it was observed
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Figure 4.20: Different views of the statistically obtained three-dimensional failure surface

based upon eq. (4.32), for a 10% probability of unexpected failure with a 95% confidence

(L̂ = 100 µm).

that not all, but most, of the (Gic, ψ̂, φ) points along the delamination front are above

the statistical failure surface, where failure is assumed to occur. The number of experi-

mental data points (Gic, ψ̂, φ) which are below the statistical failure surface is the same

as presented in Table 4.12, noted by n, which is for both two and three dimensions. It

may also be observed in Fig. 4.20 that there is scatter about this surface too and that

the values of the interface energy release rate data points of specimen sp1.2, which are

marked by the black stars in Figs. 4.19 and 4.20, are all below the statistical 3D-criterion

at a location which is supposed to be safe from failure. While ignoring specimen sp1.2, it

may be observed that less than 6.2% of the (Gic, ψ̂, φ) data points, a total of 36 points, are

below the statistical failure surface, which is based upon the statistical fracture criterion

given in eq. (4.32). Again, it may be concluded that the probability analysis, that was

carried out, reduced the chance for an unexpected/premature failure. It may be assumed

that the region below the reduced 3D-surface is safe from failure with a 90% probability

and 95% confidence. This assumption is correct as long as the specimen or structure is

free of pores or other initial damage as with specimen sp1.2.

It may be noted that the mixed-mode fracture toughness measured by means of the BD

test specimen, as detailed in this chapter, has been published in Banks-Sills and Dolev
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(2020). In Mega et al. (2020), a summary and comparison of test results obtained from

BD mixed-mode fracture toughness tests of two different material systems, the MD car-

bon/epoxy prepreg plain woven plies considered here and the MD carbon/epoxy wet-layup

composite studied in Mega and Banks-Sills (2019), have been presented. The delamina-

tion initiation deterministic failure criteria (2D and 3D) given in eqs. (4.18) and (4.27)

and shown in Figs. 4.16, 4.18 and 4.19, as well as statistically obtained fracture initiation

criteria (2D and 3D) given in eqs. (4.26) and (4.29) and shown in Figs. 4.16, 4.18 and 4.20,

have been also published in Mega et al. (2020).



Chapter 5

Beam-type specimens: quasi-static

tests

In this investigation, the double cantilever beam (DCB), calibrated-end loaded split (C-

ELS) and mixed-mode end loaded split (MMELS) specimens were used for measuring

the interface fracture toughness Gic and R-curve behavior for nearly mode I, nearly mode

II and in-plane mixed mode ratios, respectively, for a delamination between two plain

balanced woven plies. The interface is the same as that investigated for the BD specimens

and discussed at the very beginning of Chapters 1 and 4. As mentioned in Section 1.3,

for woven MD laminate composites, there are no standardized fracture toughness test

methods. Here, the existing standardized interlaminar fracture toughness test methods for

unidirectional fiber reinforced laminate composites were used for guidance. These include

the ASTM Standard D 5528-13 (2014) and ISO 15024 (2011) for mode I deformation and

the ISO 15114 (2014) for mode II deformation. It should be noted here that, in general,

for a delamination between plies with tows in different directions pure deformation modes

cannot be attained. For DCB specimens there will be a small in-plane sliding component;

for C-ELS specimens, a small opening component; and for MMELS, the modes 1 and 2

components will vary with delamination length.

The layup of all MD laminate composite beam-type configurations, is shown in Fig. 5.1,

in which the red and gray layers represent the weave in the 0◦/90◦ and +45◦/−45◦ direc-

tions, respectively. The composite strips containing an artificial delamination, which were

used in preparing the different beam-type specimens, were cut via a water-jet machine

from a composite plate, which was fabricated and autoclave cured. The 530×885×5 mm3

laminate composite plate was hand layered with 23 carbon/epoxy (G0814/913) prepreg

plain woven plies, each ∼0.22 mm thick. The initial delamination length a0, which

was set to about 50 mm long, was introduced by means of a non-adhesive thin PTFE

film, ∼12.8 µm thick. The material properties used to model the plain woven plies

99
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Figure 5.1: Beam-type specimen of an MD laminate composite layup. Position of delam-

ination is illustrated in yellow.

with yarn in the 0◦/90◦-directions are presented in Table 2.1. The properties of the

ply with yarn in the +45◦/-45◦-directions were obtained by rotating the properties of

the 0◦/90◦ ply about the x2-axis shown in Fig. 1.1b by 45◦ (Ting, 1996, pp.54-55),

and are also presented in Table 2.1. A ply group or stack constructed from the same

plain woven plies has the same material properties as a single ply with its total thick-

ness the sum of thicknesses of each ply within the ply group. The layup contains

23 carbon/epoxy (G0814/913) prepreg plain woven plies in the following stacking se-

quence: [(0◦/90◦)3, (+45◦/− 45◦), (0◦/90◦)3, (+45◦/− 45◦), (0◦/90◦)3 // (+45◦/ − 45◦),

(0◦/90◦)3, (+45◦/− 45◦), (0◦/90◦)3, (+45◦/− 45◦), (0◦/90◦)3] as shown in Fig. 5.1. The

gray ply consists of a +45◦/-45◦ plain woven ply; the red stacks are 0◦/90◦ plies.

The three specimens used in this study are shown in Figs. 5.2a, 5.2b and 5.2c for the

DCB, C-ELS and MMELS specimens, respectively. A test protocol is described in Sec-

tions 5.1.1, 5.2.1 and 5.3.1, for each specimen, respectively. A total of thirteen tests

were performed with the three configurations to obtain approximately three distinct

mode mixities, so that the failure behavior at various mode mixities was achieved. The

specimens were analyzed by means of the FE method. Analyses are presented in Sec-

tions 5.1.2, 5.2.2 and 5.3.2 for each specimen type, respectively, and results are described

in Sections 5.1.3, 5.2.3 and 5.3.3, respectively.
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Figure 5.2: Illustration of beam-type specimens with load blocks: (a) DCB, (b) C-ELS

and (c) MMELS.

5.1 DCB

Three quasi-static tests of delamination initiation and propagation were carried out on

DCB specimens with the layup shown in Fig. 5.1. An illustration of a DCB specimen, is

presented in Figs. 5.2a and 5.3a, where the geometric parameters l, b and 2h are the spec-

imen length, width and height, respectively. Note that in the ASTM Standard D 5528-13

(2014), the height is denoted by h. The initial delamination length a0 is measured from

the artificially introduced delamination front to the load line. It should be noted that the

currently considered interface was already investigated in Banks-Sills et al. (2013) and

Simon et al. (2017), in which DCB quasi-static tests were carried out on quasi-isotropic

laminate specimens made of the same plain woven composite material (G0814/913 car-

bon/epoxy) with the same interface, as presented in Fig. 1.1b. Those specimens contained

15 plies alternating between 0◦/90◦ and +45◦/-45◦-directions. In Banks-Sills et al. (2013),

the first specimen batch was used for measuring the nearly mode I fracture toughness of

the 15 ply laminate; whereas, the second specimen batch was used in Ishbir et al. (2014)

for measuring the nearly mode I fatigue delamination propagation rate, da/dN , under

constant amplitude displacement cycles with a constant displacement ratio of Rd = 0.1.

The third, fourth and fifth specimen batches were used in Simon et al. (2017) in order to

develop a methodology for predicting the nearly mode I delamination growth rate under

various R-ratios. The sixth specimen batch, with 69 woven plies was used in Chapter 4 for

measuring the mixed mode interface fracture toughness Gic while employing the BD test
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Figure 5.3: (a) Measurement locations for DCB specimens. (b) Illustration of DCB

specimen heights (interface location is marked by the dashed line): 2h - total height; hT

and hB - upper and lower specimen sub-laminate heights, respectively.

specimen. Another MD laminate composite plate was manufactured from 15 alternating

woven plies, and was found to be too flexible for carrying out the C-ELS tests. Thus, a

stiffer layup was designed as shown in Fig. 5.1, which is considered as the seventh speci-

men batch. The DCB tests were carried out to compare results obtained here to those in

Simon et al. (2017). The plates from which the specimens were fabricated were different.

5.1.1 Delamination propagation test protocol

In this section, the DCB test protocol is presented. Specimen dimensions were measured

in the spirit of the ASTM Standard D 5528-13 (2014) and ISO 15024 (2011) Standard.

Measurements of the geometric parameters of each DCB specimen, some of which are

presented in Figs. 5.2a and 5.3a, were made. The specimen height 2h was measured along

the specimen center-line at five locations. One location is behind the delamination front

(about 30 mm from the end of the specimen where load blocks are attached). There

are four locations ahead of the delamination front: near the end of the PTFE film,

about 30 mm from the other end of the specimen and at two equally spaced locations in

between, as presented schematically in Fig. 5.3a. These measurements were made with a

digital micrometer, which has a resolution of 0.001 mm. At these locations, the specimen

width b was measured with an electronic digital caliper of resolution 0.01 mm. These

measurements were carried out before a test was conducted. According to the ASTM

Standard D 5528-13 (2014), the length of the specimen l should be at least 125 mm. It
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may be noted that the ASTM Standard D 5528-13 (2014) recommends making only three

measurements, at specimen midpoint and next to each edge of the specimen; meaning,

at b1 and b5 and one measurement at the specimen midpoint b3. In addition, at these

locations, the thickness measurements should be performed, along the specimen center-

line. The variation in thickness along the specimen length shall not exceed 0.1 mm. The

ISO 15024 (2011) Standard recommends measuring the specimen width b at three evenly

spaced points along the specimen length. At these locations, thickness measurements

should be made along the specimen center-line. In addition, specimen thickness should

be measured next to each edge of the specimen at width midpoint. It may be noted that

here the measurements were performed at locations of interest, combining both standards

recommendations. The initial delamination length a0 was measured from the center of

the loading holes to the end of delamination front on both specimen sides, front and back,

with the Vision Measuring Machine (model number iMS-2010; DongGuang, China), with

a resolution of 0.0001 mm. The length of the specimen l was measured with a ruler.

White acrylic paint was applied to both sides of each specimen for easier delamination

front tracking. Prior to specimen painting, the delamination tip (PTFE end) was detected

and marked with the aid of a Carl ZeissTM microscope (model Stemi 2000-C stereomicro-

scope, Göttingen, Germany).

After the acrylic paint dried, the specimens were placed in a conditioning chamber (M.R.C.

BTH80/-20, Holon, Israel) at least one week before a test was carried out. The chamber

conditions are 23± 1◦ C and 50± 3% relative humidity (RH), which is within the re-

quirements of the ASTM Standard D5528-13 (2014). According to the ASTM Standard

D5528-13 (2014), specimens should be tested at conditions of 23± 3◦ C and 50± 10% RH.

At the beginning of each test, the temperature and the RH in the Instron work area were

noted and their values were monitored continuously (every 5 min) throughout a test.

A load P was applied normal to the specimen thickness, through the upper load block

using an Instron loading machine (model number 8872, Bucks, UK), according to the

recommendations presented in the ASTM Standard D 5528-13 (2014) and ISO 15024

(2011) Standard. The lower load block was fixed. The load cell with a maximum load

of 250 N and a resolution of ±0.25% of the reading for a load greater than 2.5 N was

used. The tests were carried out in displacement control. The ASTM Standard D 5528-

13 (2014) and ISO 15024 (2011) Standard recommend a displacement rate of between

0.5 and 5 mm/min for specimen loading; for unloading, the displacement rate should not

exceed 25 mm/min. Automatic test instructions were written via the Instron WaveMatrix

computer software, which controls the Instron loading machine. In the first test stage, in

which the delamination propagated for a short distance from the artificial delamination

of an initial length a0, the cross-head displacement of the Instron was increased quasi-

statically at a rate of 1 mm/min. If there was a load drop of 5 N, the Instron automatically
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Figure 5.4: DCB fracture toughness test setup: (a) general view and (b) close-up.

unloaded at a rate of 5 mm/min. Otherwise, the delamination propagation was monitored.

For a propagation of between 3 to 5 mm, unloading was induced at a rate of 5 mm/min. In

either case of unloading, a residual load of about 3 N remained on the specimen. A small

residual opening load was chosen to prevent accidental application of a compressive load.

In the next stage, in which the delamination propagates from the pre-delamination length

ap derived in the first stage, the cross-head displacement of the Instron was increased

quasi-statically at a rate of 1 mm/min until the delamination propagated 60 mm. Next,

the specimen was unloaded to about 3 N at a rate of 5 mm/min.

The test setup is shown in Fig. 5.4. The cross-head displacement and the applied load

are obtained by a computer which monitors the Instron machine. A LaVision system,

described in Section 4.1, is employed during the test. Prior to testing, the camera is

aligned using a level. During a test, images of the test specimen are taken at a rate of

2 Hz. The LaVision system enables synchronization between the Instron machine cross-

head displacement and load and the images of the specimen acquired by the LaVision

camera. In this way, the instantaneous applied load and displacement are displayed on

the appropriate image of the test specimen. A paper ruler is attached to each specimen

prior to testing. When test analysis is performed, the ruler is used for calibration and

delamination tip tracking along with the reference tracking marks, as presented in Fig. 5.5

for specimen DCB-7-1.1. The specimen identifier includes DCB which represents the test

type; 7 which represents the batch number; and 1.1, where the first number represents
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Figure 5.5: Image of the delamination in a DCB specimen (DCB-7-1.1) during a fracture

toughness test, captured via the LaVision digital camera.

the row from which the specimen was fabricated and the second number represents the

position in the row.

At the end of each test, the total length of the delamination a was determined. The

total delamination propagation length is measured from the end of the PTFE film to the

delamination tip on both specimen sides (front and back) with the optical mode of an

Olympus Confocal Microscope (model number OLS4100; Tokyo, Japan), with a resolution

of 0.16 (pixel/µm)2. Then, the appropriate value was added to the corresponding initial

delamination length a0. All geometric parameters are used in the FE model of each DCB

specimen.

Since in each specimen the upper and lower arms are of different heights, these were

measured after a test was performed. It was not possible to measure them before a

test. In Figs. 5.6a and 5.6b, the variation in the height of the specimen arms or sub-

laminates along the interface is shown for two different specimens MMELS-7-1.7 and C-

ELS-7-1.13, respectively. In Figs. 5.6, the pictures are of two arbitrary tested beam-type

specimens, which were photographed while their final delamination length was measured

by means of the optical mode of the Olympus confocal microscope. The height variation

of the specimen arms, which may be observed in Figs. 5.6, was common to all beam-type

specimens, regardless of the test method; it was observed in the DCB, C-ELS and MMELS

test specimens. The height of the upper and lower sub-laminates hT and hB, respectively,

as illustrated in Fig. 5.3b, is measured at the approximate specimen center-line at five

locations along the specimen length with a digital micrometer. These measurements are

made at the same location at which the total height of the specimen, 2h, was previously

measured. The measured values of the height of the upper and lower arms are sensitive to
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Figure 5.6: Representative examples of the height variation of specimen arms or sub-

laminates along the interface in two different beam-type specimens: (a) MMELS-7-1.7

and (b) C-ELS-7-1.13.

the location at which the measurement is taken, whether it is a localized peak or valley.

This phenomenon does not occur on the outer surfaces of each specimen, as a result of the

manufacturing process of the composite plate, where the bottom of the composite plate is

placed on a flat aluminum plate and the MD laminate composite is uniformly compressed

by the pressurized environment applied during the thermal cycle in the autoclave.

The upper sub-laminate consists of 11 plies; whereas, the lower sub-laminate consists of

12 plies. Average values of hT and hB, hT and hB, were found. It was seen that hT was

thinner than hB but not in proportion to the fewer number of plies in that arm. It was

also observed that the sum of hT and hB was not equal to 2h. Hence, hT and hB were

scaled. Scaling hT and hB assisted in overcoming these differences. The scaled parameters

at various points along the specimen length are given as

h
(sc)
T =

2h

hT + hB
· hT

h
(sc)
B =

2h

hT + hB
· hB.

(5.1)

In this way,

2h = h
(sc)

T + h
(sc)

B , (5.2)

where h
(sc)

T and h
(sc)

B are the averaged values of the scaled parameters h
(sc)
T and h

(sc)
B ,

respectively.
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5.1.2 Analysis

Three DCB specimens containing an artificial delamination were tested based on the

protocol presented in Section 5.1.1. The geometric parameters of the tested specimens,

which are shown in Figs. 5.2a and 5.3a, are presented in Table 5.1. The parameters with

subscript 1 represent measurements behind the artificial delamination front, whereas pa-

rameters with subscripts 2 to 5 represent measurements length ahead of the delamination

front. Average values of specimen height and width denoted by 2h and b, respectively, are

presented in Table 5.1. It should be noted that the low values of the standard deviation

(STD) demonstrate the repeatability in specimen fabrication. Recall that according to

the ASTM Standard D 5528-13 (2014), the thickness variation along the specimen length

shall not exceed 0.1 mm; whereas, the ISO 15024 (2011) Standard recommends that the

variation in thickness and width along the specimen length should be limited to ±1%

of the mean value of the measured dimension obtained for that specimen. It may be

found that all specimens comply with both standards. The measured values for the up-

per and lower sub-laminates of the DCB specimens are presented in Tables G.1 and G.2.

The scaled values appear in Tables G.3 and G.4. Their averages, which also appear in

Tables G.3 and G.4, were used in the FE model of each DCB specimen. It should be

noted that the evaluated average ply thickness of the 11 plies in the upper specimen arm

or sub-laminate, which is calculated as hT/11, is thinner than the evaluated average ply

thickness of the 12 plies in the lower specimen sub-laminate, which is calculated as hB/12.

A typical difference of about 0.03 mm in the average ply thickness between the upper and

lower sub-laminates was obtained. Recall that the nominal ply thickness is 0.22 mm.

Nevertheless, those evaluated ply thicknesses are within the valid range acceptable for

this material and manufacturing process.

Table 5.1: Geometric parameters of the DCB specimens.

specimen no. 2h1 (mm) 2h2 (mm) 2h3 (mm) 2h4 (mm) 2h5 (mm) 2h (mm) STD (mm)

DCB-7-1.1 5.00 5.00 4.97 4.98 4.99 4.99 0.01

DCB-7-1.2 5.08 5.05 5.04 5.04 5.06 5.05 0.01

DCB-7-1.3 5.05 5.05 5.04 5.04 5.07 5.05 0.01

specimen no. b1 (mm) b2 (mm) b3 (mm) b4 (mm) b5 (mm) b (mm) STD (mm)

DCB-7-1.1 20.47 20.45 20.51 20.42 20.34 20.44 0.06

DCB-7-1.2 20.47 20.42 20.42 20.36 20.36 20.41 0.04

DCB-7-1.3 20.34 20.32 20.33 20.32 20.32 20.33 0.01

specimen no. a
(f)
0 (mm) a

(b)
0 (mm) a0 (mm) |∆0| (mm) l (mm)

DCB-7-1.1 50.30 50.78 50.54 0.48 200.5

DCB-7-1.2 51.54 51.49 51.52 0.05 199.5

DCB-7-1.3 50.87 50.59 50.73 0.28 200.0
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Table 5.2: Failure load at initial delamination propagation and final delamination length
of the DCB specimens.

specimen no. Pi a
(f)
f (mm) a

(b)
f (mm) af (mm) |∆f | (mm)

DCB-7-1.1 53.6 112.04 112.66 112.35 0.62

DCB-7-1.2 63.0 111.31 111.81 111.56 0.50

DCB-7-1.3 56.7 110.60 110.12 110.36 0.48

The initial delamination length on the front and back sides of the specimen, a
(f)
0 and a

(b)
0 ,

respectively, as well as the average value of the initial delamination length a0 are also

presented in Table 5.1. It is observed that the absolute difference between a
(f)
0 and a

(b)
0 ,

denoted as |∆0| in Table 5.1, for each specimen is less than 2 mm, which complies with

the ASTM Standard D 5528-13 (2014) and ISO 15024 (2011) Standard. According to

those standards, a0 should be approximately 50 mm long. Here it is a little longer. The

length of the specimens, l, is also presented in Table 5.1, and is seen to be approximately

200 mm, which conforms with both standards. After the tests were carried out, the

delamination length was measured on both sides of each specimen by means of the optical

mode of the Olympus confocal microscope. These values are presented in Table 5.2, as

a
(f)
f and a

(b)
f , respectively. It may be observed that the absolute difference between the

final delamination length on both sides of each specimen, denoted by |∆f |, is less than

2 mm for all specimens, as required in the standards.

The room temperature and relative humidity (RH) were recorded during the tests, where

each lasted about 1 hour. The initial and final environmental conditions of each test

are presented in Table 5.3. Recall that the ASTM Standard D 5528-13 (2014) requires

that the test temperature be 23± 3◦ C and the RH be 50± 10%. In Table 5.3, it may

be observed that the RH was generally less than the recommended values, whereas the

temperatures were within the required range.

The load-displacement curves obtained for the three DCB fracture toughness tests are

shown in Fig. 5.7. It is seen that the initial propagation load Pi seen visually in the

images and coinciding with the first load drop are presented in Table 5.2. In Fig. 5.7,

each abrupt load drop in the curve implies unstable delamination propagation. It may

be seen that almost no stable delamination propagation, which is characterised by a

Table 5.3: Temperature and relative humidity during DCB tests.

specimen no. ϑinitial (
◦C) RHinitial (%) ϑfinal (

◦C) RHfinal (%)

DCB-7-1.1 22.6 34.4 21.9 29.4

DCB-7-1.2 22.7 40.0 22.5 39.3

DCB-7-1.3 22.7 32.5 24.6 23.4
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Figure 5.7: Load versus displacement curves from fracture toughness tests of DCB speci-

mens: DCB-7-1.1, DCB-7-1.2 and DCB-7-1.3.

continuous load decrease, was detected. The same behavior was observed for all three

DCB specimens. It should be noted that in Ishbir et al. (2014) and Simon et al. (2017),

where a different layup but the same interface for the DCB specimens was considered,

similar behavior of delamination propagation was reported.

After the test, the recorded load-displacement data along with the specimen photographs

captured during the test were analyzed to obtain a relationship between delamination

length, a, and the compliance C. Recall that the compliance is given by

C =
d

P
(5.3)

where d is the loading machine actuator displacement and P is the applied load, as may

be seen in Fig. 5.7. As verified and mentioned by Simon et al. (2017) and Chocron and

Banks-Sills (2019), the loading machine compliance without the specimen was found to be

very small. Since the same loading machine was used here with a similar DCB specimen,

it was also assumed that the specimen opening displacement could be approximated by

the loading machine actuator displacement.

It should be noted that delamination propagation, as observed in the images, was not

always straight forward; sometimes there was a bifurcation of the delamination tip on

the specimen edge. At other locations, the delamination tip jumped several millimeters

ahead. Nevertheless, although it was sometimes difficult to determine the position of the
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Table 5.4: Detected delamination propagation parameters for specimen DCB-7-1.1.

a (mm) ∆a (mm) C (mm/N) P (N) image no.

50.54 0.0 0.085 53.6 546
51.44 0.9 0.092 58.6 1259
55.54 5.0 0.119 69.8 1507
59.24 8.7 0.155 70.5 1738
74.34 23.8 0.282 55.6 2326
78.04 27.5 0.300 52.0 2487
82.54 32.0 0.358 49.7 2702
85.14 34.6 0.409 48.6 2838
104.54 54.0 0.748 40.8 4105

delamination tip from the specimen photographs, curve fitting of specimen compliance

versus delamination length was performed based upon the data obtained for visually

detected delamination lengths. In a similar manner as suggested in Simon et al. (2017)

and Chocron and Banks-Sills (2019), and following the ASTM Standard D 5528-13 (2014)

and ISO 15024 (2011) Standard regarding beam theory, it may be shown that C ∝ a3.

Thus, the relationship between the delamination length and specimen compliance may be

expressed by a power law of the form

a = g(C − C0)
1/3. (5.4)

In eq. (5.4), parameters g and C0 are fitting parameters of the power law which fits the

empirical data. In Table 5.4, some delamination propagation parameters are presented for

specimen DCB-7-1.1. These parameters are for delamination lengths that were visually

detected within the recorded data of a P versus d curve and the photographs. The exper-

imental data in Table 5.4 was used along with eq. (5.4) to generate the a versus C fitting

curve presented in Fig. 5.8. The values of g and C0 and the coefficient of determination R2

S�
eci
✁�

a (mm)

C (mm/N)

po��r la� w�t

v�sually m�asur�� ��lam�nat�on l�ngt�

Figure 5.8: Correlation between delamination length and test compliance for specimen

DCB-7-1.1.
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were found as 115.66 (N ·mm2)
1/3

, 6.23·10−3 mm/N and 0.998, respectively. In Fig. 5.8,

it may be observed that there is good agreement between the measured and evaluated

values of a. The same procedure was performed separately with the experimental data

of specimens DCB-7-1.2 and DCB-7-1.3. The delamination propagation data of speci-

mens DCB-7-1.1, DCB-7-1.2 and DCB-7-1.3 is presented in Tables G.5, G.6 and G.7,

respectively, for visually detected and evaluated delamination lengths. In those tables, the

values of the parameters of eq. (5.4), g and C0, as well as the coefficient of determination

R2, are shown for each DCB specimen.

All DCB specimens were analyzed by means of the FE method using the ADINA (Bathe,

2011) software. The three-dimensional FE models contained twenty noded isoparametric,

brick elements. In order to model the square-root singularity along the delamination

front, quarter-point elements were used. The oscillatory part of the singularity was not

modeled. The material properties used to characterize the plain woven plies with the yarn

in the 0◦/90◦ and +45◦/ − 45◦ directions are presented in Table 2.1. An example of a

three-dimensional FE model is presented in Fig. 5.9a, where the FE model was used in

analyzing specimen DCB-7-1.1.

To demonstrate mesh convergence of the FE model inner mesh, as well as domain indepen-

dence, a coarse, fine and finer mesh were used with the geometric parameters of specimen

DCB-7-1.1 in Table 5.1 with a representative delamination length of a = 80 mm. The

in-plane dimensions of the elements in the vicinity of the delamination front were set to

1.03 · 10−4 × 1.03 · 10−4 m2, 5.14 · 10−5 × 5.14 · 10−5 m2 and 2.57 · 10−5 × 2.57 · 10−5 m2,

as shown in Figs. 5.10a, 5.10b and 5.10c, respectively. A modified fine mesh shown in

Fig. 5.10d, in which the ply thickness of the upper and lower plies which define the inter-

face were divided into 4 elements along their thickness, was also generated. In that mesh,

Figure 5.9: (a) Mesh of the DCB specimen. (b) Detailed front view near the delamination

tip.
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(a) (c)(b) (d)

Figure 5.10: Detailed front-view of FE models of one delamination tip region of specimen

DCB-7-1.1 used in convergence study: (a) coarse mesh, (b) fine mesh, (c) finer mesh and

(d) modified fine mesh.

the in-plane dimensions of the elements in the vicinity of the delamination front were set

to 5.14 · 10−5×5.14 · 10−5 m2 in the upper ply and 5.14 · 10−5×5.69 · 10−5 m2 in the lower

ply. Thus, an in-plane aspect ratio of 1.0 and 1.11 was obtained, respectively, as shown

in Figs. 5.9b and 5.10d. It may be noted that the in-plane aspect ratio of the elements

at the bottom of the lower ply in the coarse mesh in Fig. 5.10a is 5.04; for the fine and

finer meshes in Figs. 5.10b and 5.10c, the in-plane aspect ratio of some of those elements

is 2.52 and 5.04. In all meshes there were 40 elements along the delamination front, each

5.1 · 10−4 m thick. The delamination front is assumed to be straight through the model

width. Some characteristics of the FE meshes which were used in the convergence study

are given in Table 5.5.

An arbitrary constant load of P FEA = 20 N was applied in all FE analyses for simplicity.

The stress intensity factors were calculated along the delamination front of each mesh by

means of the three-dimensionalM-integral, which was described in Section 3.2. The stress

intensity factors obtained for the modified fine mesh were also verified by means of the DE

Table 5.5: Characteristics of the four meshes which were used in the convergence study
of the DCB specimen.

mesh no. of no. of element in-plane size near in-plane no. of integration
elements nodes delamination front (m2) aspect ratio domains

coarse 167,600 706,719 1.03 · 10−4 × 1.03 · 10−4 1.0 2

fine 178,560 752,113 5.14 · 10−5 × 5.14 · 10−5 1.0 4

finer 191,440 805,453 2.57 · 10−5 × 2.57 · 10−5 1.0 5

modified fine 177,760 748,975 5.14 · 10−5 × 5.14 · 10−5 1.0 4
upper ply elements

5.14 · 10−5 × 5.69 · 10−5 1.11
lower ply elements
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Figure 5.11: Stress intensity factors calculated along the delamination front by means of

the three-dimensional M-integral for the largest domain of each FE mesh used to analyze

specimen DCB-7-1.1 (coarse, fine and finer meshes). (a) K1 in MPa
√
m ·m−iε, (b) K2 in

MPa
√
m ·m−iε and (c) KIII in MPa

√
m.

method, which was presented in Section 3.1. The stress intensity factors obtained for the

largest domain of each mesh as a function of the normalized delamination front coordinate

(x3/b) are shown in Fig. 5.11. Recall that the dimensions of the complex in-plane stress

intensity factor components are F×L−(3/2+iε), where F and L represent force and length,

respectively. The oscillatory parameter, ε, depends upon the mechanical properties of

both materials on either side of the interface and for the investigated interface is presented

in Table 4.9 and given in eq. (2.46). Both in-plane stress intensity factor components,

K1 and K2, have units of MPa
√
m · m−iε and are shown, respectively, in Figs. 5.11a

and 5.11b. The dimensions of the out-of-plane stress intensity factor, KIII , are F×L−3/2

with units of MPa
√
m; it is presented in Fig. 5.11c. It may be observed that the in-plane

stress intensity factors shown in Figs. 5.11a and 5.11b, respectively, are symmetric with

respect to specimen mid-thickness (x3/b = 0.5), whereas the out-of-plane stress intensity

factor shown in Fig. 5.11c is anti-symmetric. Differences between the various results are

discussed in the sequel.

To demonstrate domain independence with the finer mesh shown in Fig. 5.10c, the stress

intensity factors obtained by means of the M-integral in domain 5, which is shown in

Fig. 3.2e, served as reference values and were used for comparison. In order to quantify

the change in the calculated stress intensity factors obtained for each domain, the percent

difference defined in eq. (4.8) was used. In Table 5.6, the differences between the stress

intensity factors obtained for the fifth (reference) and other domains of integration (see

Fig. 3.2) are presented. It should be noted that the maximum percent difference shown

in Table 5.6 occurred at different positions along the delamination front. The values

obtained for the different integration domains demonstrate domain independence. In a
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Table 5.6: Maximum percent difference (in absolute value) between the stress intensity
factors calculated for the fifth integration domain (reference) and domains 2, 3 and 4 of
the finer mesh shown in Fig. 5.10c.

percent difference

domain 2 domain 3 domain 4

K1 K2 KIII K1 K2 KIII K1 K2 KIII

0.101 0.495 0.288 0.062 0.261 0.091 0.017 0.119 0.022

similar manner, demonstration of domain independence with the modified fine mesh shown

in Fig. 5.10d, is presented in Table 5.7, in which the stress intensity factors obtained by

means of the M-integral in domain 4 (shown in Fig. 3.2d) served as reference values and

were used for comparison. Note, that the maximum percent difference shown in Table 5.7

occurred at different positions along the delamination front. The differences were less

than 0.2% for domain 3.

In addition to Fig. 5.11, solution convergence is examined in Table 5.8, in which the differ-

ences between the stress intensity factors obtained for pairs of meshes are presented. For

each pair of meshes, the mesh which is more refined in the vicinity of the delamination

front serves as the reference (ref) in eq. (4.8). It should be noted that the maximum

percent differences shown in Table 5.8 occurred at different positions along the delami-

nation front. It may be observed that convergence is obtained for both ranges of x3/b.

Results for x3/b = 0.0125 and 0.9875, that is for the domain in the outermost elements,

deteriorate as compared to the other domains. Recall that in the development of the first

term of the asymptotic stress and displacement fields, conditions of plane deformation

were assumed, as may be seen in Section 2.2. This assumption is common in cases of

through cracks/delaminations, so that the singularity related to body/medium free sur-

face is not represented. Moreover, the assumption of plane deformation over constrains

the free surface. Therefore, the values calculated by means of the M-integral and the DE

method at FE model outer faces are inaccurate. Since the absolute value of the maximum

percent difference within the range of 0.0375 ≤ x3/b ≤ 0.9625 between the fine and the

finer mesh and also between the modified fine and the finer mesh is less than 0.3%, it

Table 5.7: Maximum percent difference (in absolute value) between the stress intensity
factors calculated for the fourth integration domain (reference) and domains 2 and 3 of
the modified fine mesh shown in Fig. 5.10d.

percent difference

domain 2 domain 3

K1 K2 KIII K1 K2 KIII

0.096 0.411 0.353 0.064 0.180 0.088
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Table 5.8: Maximum percent difference (in absolute value) between the stress intensity
factors for pairs of meshes, along the delamination front, calculated for the largest inte-
gration domain of each mesh.

percent difference

meshes coarse and fine fine and finer modified fine and finer

range K1 K2 KIII K1 K2 KIII K1 K2 KIII

0.0375 ≤ x3/b ≤ 0.9625 0.045 1.043 0.473 0.004 0.125 0.202 0.006 0.186 0.194

0.0125 ≤ x3/b ≤ 0.9875 0.045 3.062 4.370 0.015 1.070 1.518 0.022 1.336 1.692

may be concluded that the fine mesh (typical side view of one delamination tip region is

shown in Fig. 5.10b) and the modified fine mesh (typical side view of one delamination

tip region is shown in Fig. 5.10d) may be used in all FE models in this study.

The stress intensity factors obtained for the largest domain of the finer and modified fine

meshes as a function of the normalized delamination front coordinate x3/b, as well as the

stress intensity factors obtained for the modified fine mesh by means of the DE method,

are shown in Fig. 5.12. Although the values of the stress intensity factors are calculated

at different locations along the normalized delamination front coordinate x3/b, it may be

observed in Fig. 5.12 that the behavior of each stress intensity factor obtained by means of

the DE method is similar to the corresponding stress intensity factor calculated by means

of the three-dimensional M-integral. It may be noted that at model mid-width where

x3/b = 0.5, the maximum percent differences between the fine and the finer mesh are less

than 0.004%, 0.12% and 0.008% for K1, K2 and KIII , respectively. Between the modified
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Figure 5.12: Stress intensity factors calculated along the delamination front by means of

the three-dimensional M-integral for the largest domain of the finer and modified fine

meshes and those calculated by means of the DE method for the modified fine mesh. (a)

K1 in MPa
√
m ·m−iε, (b) K2 in MPa

√
m ·m−iε and (c) KIII in MPa

√
m.
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fine and the finer mesh, they are less than 0.006%, 0.1% and 0.001% for K1, K2 and KIII ,

respectively. The maximum percent differences for K1 and K2 between the modified fine

mesh extracted by means of the DE method and the finer mesh are less than 0.5% and

0.7%, respectively. The maximum percent difference for KIII is meaningless at this point,

since the value obtained by means of the DE method is less than 1.6 · 10−7 MPa
√
m,

whereas the value retrieved by means of the M-integral for the finer mesh is less than

6.0 · 10−12 MPa
√
m.

It may be pointed out that for the in-plane phase angle ψ̂, which characterizes the in-

plane mode mixity, at model mid-width where x3/b = 0.5, the maximum percent difference

between the fine and the finer mesh is less than 0.12%; between the modified fine and

the finer mesh it is less than 0.11%. The maximum percent difference for ψ̂ between

the modified fine mesh extracted by means of the DE method and the finer mesh is less

than 0.19%. As expected, the DE method is less accurate than the three-dimensional

M-integral, but still reproduces relatively satisfying results especially in cases where the

three-dimensional M-integral may not be applied.

It should be noted that another FE model of the modified fine mesh in Fig. 5.10d was

generated for specimen DCB-7-1.1 with a delamination length of a = 80 mm. This is the

same specimen and same delamination length used in the convergence study in the region

of the delamination front. Mesh refinement was performed in regions that are relatively

far from the delamination front; additional nodal points were encountered far from the

delamination front, at a distance which is more than the thickness of 54 plies ahead and

behind the delamination front. This refined model contained 229,600 brick elements and

966,811 nodal points with a delamination tip region as shown in Fig. 5.10d. Far from the

delamination front, a maximum in-plane element aspect ratio of 1 to 15.6 throughout the

FE model was permitted. The properties of this mesh may be compared to that of the

modified fine mesh in Table 5.5. For the strain energy release rate calculated by ADINA

(Bathe, 2011) within the range of 0.0 ≤ x3/b ≤ 1.0, it was found that the maximum

percent difference between this mesh, with more nodal points far from the delamination

front, and the original modified fine mesh is less than 5.0 ·10−5 %. Thus, it was concluded

that the bending motion is sufficiently characterized by the original modified fine mesh.

Based upon domain independence and the convergence study for the inner and outer

FE meshes presented above, the modified fine mesh is employed for the DCB specimens.

Recall that in the modified fine mesh the in-plane dimensions of the elements in the

vicinity of the delamination front were set to 5.14 · 10−5 × 5.14 · 10−5 m2 in the upper

ply and 5.14 · 10−5 × 5.69 · 10−5 m2 in the lower ply. Thus, an in-plane aspect ratio of

1.0 and 1.11 was obtained, respectively, as shown in Fig. 5.9b. In all meshes there were

40 elements along the delamination front, each approximately 5.1 · 10−4 m thick. Finite

element models were generated for eight delamination lengths of each DCB specimen,

while assuming that the delamination front is straight through the model width. The
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delamination lengths, which were modeled, varied for the range 40 mm ≤ a ≤ 110 mm

with an increment of approximately 10 mm in order to cover the span of the experimentally

obtained delamination lengths. An arbitrary constant load of P FEA = 20 N was applied

in all FE analyses for simplicity. All FE meshes contained 177,760 brick elements and

748,975 nodal points. A maximum in-plane element aspect ratio of 1 to 11.9 was permitted

away from the delamination front, at a distance of 54 ply thicknesses ahead and behind

the delamination front. In regions very far from expected stress concentrations (such as

load application points, reactions, delamination front, etc.), an in-plane element aspect

ratio varied between 1 to 30.6 and 1 to 44.2 was permitted. It may be noted that in the

modified fine mesh for a = 80 mm, this in-plane aspect ratio was 1 to 31.4. It is recalled

that a ply group consisting of several plies of the same plain woven material is assumed

to serve as a single plain woven ply with the same material properties as described above,

with a total thickness of all plies in the ply group.

The stress intensity factors were calculated by means of the three-dimensionalM-integral,

described in Section 3.2, for each slice of elements within domain 4, one element thick

through the model thickness as shown in Fig. 3.2d. As described in Section 4.4.2, in

order to resolve the complicated units of the in-plane stress intensity factors, K1 and K2,

eq. (4.9) was used with length parameter L̂ = 100 µm. The normalized in-plane stress

intensity factors, K̂1 and K̂2, as well as the out-of-plane stress intensity factor, KIII , for

different delamination lengths but the same applied load P FEA = 20 N, as a function

of the normalized delamination front coordinate x3/b are shown in Figs. 5.13a to 5.13c,

respectively. The mesh in the neighborhood of the delamination front is translated and

the remainder of the mesh follows the same principles as that used for the mesh for

a = 80 mm. Recall that the number of elements for these meshes was fixed, 177,760

elements with 748,975 nodal points; the in-plane aspect ratio of elements far away from

the delamination front and model restraints was readjusted and varied between 1 to 30.6

and 1 to 44.2. It may be observed that the in-plane stress intensity factor components are

symmetric with respect to specimen mid-thickness x3/b = 0.5, whereas the out-of-plane

stress intensity factor is anti-symmetric. This behavior of the stress intensity factors was

observed in every analysis that was performed for each DCB FE model.

Based upon these results, the interface energy release rate Gi using eq. (1.17), as well as

the two phase angles, ψ̂ in eq. (1.12) and φ in eq. (1.14), were also calculated. The in-plane

phase angle ψ̂ and the out-of-plane phase angle φ, for different delamination lengths but

the same applied load P FEA = 20 N as a function of the normalized delamination front

coordinate x3/b are presented in Figs. 5.13d and 5.13e, respectively. It may be observed

that the values of ψ̂ in Fig. 5.13d are relatively small for every value of a through the

specimen width. Hence, the contribution of K̂2 to the total interface energy release rate

Gi is negligible. In Fig. 5.13e, the values of φ are shown, where it may be observed that φ
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Figure 5.13: Normalized in-plane stress intensity factors (a) K̂1 and (b) K̂2 (L̂ = 100 µm);

(c) out-of-plane stress intensity factor KIII ; and the two phase angles (d) ψ̂ and (e) φ as

a function of normalized delamination front coordinate x3/b for different delamination

lengths for specimen DCB-7-1.1 with an applied load P FEA = 20 N.
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is essentially the same value for every value of a. In addition, it is seen that the values of φ

are relatively small as well, except near the specimen outer edges. Hence, the contribution

of KIII to the total interface energy release rate Gi is also negligible. Nonetheless, K̂2 and

KIII are included in the calculation of Gi.

Since linear elastic behavior of the specimen was assumed, as in the ASTM Standard

D 5528-13 (2014) and ISO 15024 (2011) Standard, the stress intensity factors Kj, for

j = 1, 2, III, as well as the interface energy release rate Gi are dependent upon the

applied load P as

Kj ∝ P

Gi ∝ P 2.
(5.5)

Recall that an arbitrary constant load of P FEA = 20 N was applied in all FE analyses

for simplicity. Thus, based upon the obtained FEA results with P FEA = 20 N, the values

of the stress intensity factors Kj, for j = 1, 2, III and the interface energy release rate Gi
may be calculated, while employing the proper failure load that was measured in the test.

The relationship between the experimental data and the FE analyses is given by

KTest
j = KFEA

j

(
P Test

P FEA

)

GTesti = GFEAi

(
P Test

P FEA

)2

.

(5.6)

In eq. (5.6), the superscript FEA represents values employed or calculated from the FE

analyses; whereas the superscript Test represents values measured from the DCB test. It

may be noted that the normalized in-plane stress intensity factors, K̂1 and K̂2, are also

linearly dependent on P . It may be recalled that the phase angles ψ̂ and φ remain the

same, since the behavior of each stress intensity factor is linear with P .

Since it was found that for the DCB specimens K̂1 is dominant whereas the other stress

intensity factors may be neglected, the interface energy release rate Gi may be treated as

the mode I energy release rate GI . The mode I interface energy release rate GFEAI , for

different delamination lengths but the same applied load P FEA = 20 N as a function of

the normalized delamination front coordinate x3/b, is presented in Fig. 5.14. It may be

observed that for a constant value of the applied load, the interface energy release rate

increases with a. When using the ASTM Standard D 5528-13 (2014) or ISO 15024 (2011)

Standard to calculate the energy release rate for UD laminates, a global value is obtained.

Thus here, an average through the width is found as

GI ≡
∫ 1

0

Gi(x3/b)d(x3/b). (5.7)

It may be noted that the GFEAi (x3/b, a) curves used in calculating the average mode I

energy release rate GFEAI (a) were those obtained via the J-integral calculation embedded
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Figure 5.14: The interface energy release rate GFEAi as a function of the normalized

delamination front coordinate x3/b for different delamination lengths for specimen DCB-

7-1.1 with an applied load P FEA = 20 N.

within ADINA (Bathe, 2011) software, which is based upon the Gaussian surface integra-

tion, as may be found in Murakami and Sato (1983). Although the J-integral calculations

are retrieved at the vertices of the elements along the delamination front and not at the

mid-size of these elements, the averaged through the width values are being compared.

For specimen DCB-7-1.1 with a delamination length of a = 80 mm, the difference between

the GFEAI value calculated by means of the stress intensity factors which were extracted

via the M-integral and the GFEAI value obtained by the J-integral in ADINA (Bathe,

2011) is less than 0.01%.

A second order polynomial curve fit given by

GI(a) = C1a
2 + C2a+ C3, (5.8)

was employed in order to characterize the relationship between the calculated GFEAI from

eq. (5.7) and the corresponding delamination length a. For specimen DCB-7-1.1, the

values of the fitting parameters are given in Table 5.9.

Table 5.9: Values of the fitting parameters in eq. (5.8) for the DCB specimens.

specimen no. C1 (N/m3) C2 (N/m2) C3 (N/m) R2

DCB-7-1.1 1.52 · 104 1.16 · 102 2.47 · 10−1 1.0
DCB-7-1.2 1.42 · 104 1.64 · 102 1.16 1.0
DCB-7-1.3 1.51 · 104 1.17 · 102 2.40 · 10−1 1.0
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Figure 5.15: The averaged mode I interface energy release rate GFEAI as a function of

delamination length for specimen DCB-7-1.1 with an applied load P FEA = 20 N.

In Fig. 5.15, the GFEAI (a) fitting curve obtained for specimen DCB-7-1.1 is presented

along with the values of GFEAI in eq. (5.7) calculated for different delamination lengths

a. It may be seen that excellent agreement exists between the fitted curve and calculated

values. The same procedure was performed separately with the experimental data of

specimens DCB-7-1.2 and DCB-7-1.3 and their FEA results. For specimens DCB-7-1.2

and DCB-7-1.3, the values of the fitting parameters in eq. (5.8) are shown in Table 5.9. In

Tables G.5 through G.7 in Appendix G, the calculated values of GIR, which were obtained

by means of the FE method are presented for both experimentally detected and evaluated

delamination lengths of the corresponding DCB specimen. It may be recalled that in order

to obtain these values curve fitting in eq. (5.8) and load adjustment of the FEA applied

load to the experimentally obtained failure load in eq. (5.6) were performed.

5.1.3 Results

Based upon the data in Tables G.5 through G.7, a GIR-curve was generated. The GIR
versus ∆a = a−a0 data points are plotted in Fig. 5.16. An initiation fracture toughness is

shown for ∆a = 0 as GIc = 376.3 N/m, which is the average of the critical interface energy

release rate values for delamination growth from the PTFE insert obtained for specimens

DCB-7-1.1, DCB-7-1.2 and DCB-7-1.3. It may be seen that the values of GIR increase

with ∆a until a steady state value of GIss = 715.5 N/m is reached for ∆a = 14 mm.

Fitting the points between 0 ≤ ∆a ≤ 14 mm results in the power law given by

GIR = 118.0(∆a)0.4 + 376.3 (5.9)
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Figure 5.16: Fracture resistance curve: the average critical interface energy release rate,

referred as GIR, as a function of delamination propagation length ∆a = a− a0.

where ∆a in eq. (5.9) is measured in millimeters. The coefficient of determination R2 of

the power law in eq. (5.9) and the plotted points where 0 ≤ ∆a ≤ 14 mm was found as

0.89. Also, it may be observed that for 14 mm ≤ ∆a ≤ 60 mm, most of the GIR data

points are within one standard deviation from the GIss line; the value of one STD was

found to be 57.8 N/m.

A comparison was made between the results obtained in the current investigation with

those obtained in Simon et al. (2017). In that study, the same layup was used, the same

interface but two different batches. For batch 1, the specimens had thicknesses which

varied between 3.7 mm and 3.9 mm and an artificial delamination length of approxi-

mately 24 mm; the second batch had an average thickness of 3.45 mm and an artificial

delamination length of approximately 47.5 mm. The data obtained here is for the same

interface, but a different and thicker layup of approximate thickness 5.0 mm and artificial

delamination length of approximately 51 mm. It may be noted that the fracture tough-

ness resistance data presented in Banks-Sills et al. (2013) and Ishbir et al. (2014) was

obtained with a different test protocol, which did not follow that presented in Simon et

al. (2017). In the current study the test protocol followed the fracture resistance test

protocol presented in Simon et al. (2017). Thus, the comparison is made only to the data

presented in Simon et al. (2017).

In Fig. 5.17, despite the scatter in the region where GIR increases with ∆a, it may be seen

that the GIc values at delamination initiation and GIR values for propagation of specimens

DCB-7-1.1, DCB-7-1.2 and DCB-7-1.3 up to GIss are lower than those obtained in Simon et

al. (2017), where GIc = 507.5 N/m. The behavior in which specimens of greater thickness
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Figure 5.17: Fracture toughness resistance curves: comparison between results from the

current investigation and results presented in Simon et al. (2017).

have lower fracture toughness values was observed in other studies. In Kravchenko et

al. (2017), UD, CFRP DCB specimens were tested with four different thickness between

2.0 mm and 8.4 mm. The critical mode I energy release rate GIc varied between 192 N/m

for the thickest specimen and 277 N/m for the thinnest. Moreover, the BD specimens

tested in Section 4.5 had an approximate composite strip height of 15.6 mm with a critical

mode 1 energy release rate of 210.2 N/m. Another example is the MD carbon/epoxy

composite studied in Mega and Banks-Sills (2019) with G1c = 114.4 N/m obtained by

means of BD specimens with an approximate height of 16.6 mm. In Chocron and Banks-

Sills (2019), DCB specimens which were 5 mm thick and fabricated from the same material

and interface as in Mega and Banks-Sills (2019) were tested with a critical mode I energy

release rate of 357.9 N/m. In addition, it may be seen in Fig. 5.17, that at the plateau

region, almost the same GIss value was obtained here as GIss = 715.5 N/m; in Simon

et al. (2017), GIss = 710.9 N/m. Thus, it appears that in the steady state region the

delamination propagation mode I energy release rate GIR values are relatively insensitive

to the height/thickness of the DCB specimens. This is supported by the behavior of

R-curves for thermoset UD laminate specimens as discussed in Suo et al. (1992) for the

case in which fiber bridging occurs.
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5.2 C-ELS

Five quasi-static tests of delamination initiation and propagation were carried out on C-

ELS specimens with the layup shown in Fig. 5.1. An illustration of a C-ELS specimen

is presented in Fig. 5.2b, where the geometric parameters l, b and 2h are the specimen

length, width and height, respectively. In Fig. 5.2b, the right side of the specimen is

constrained by means of a clamping fixture, so that free horizontal sliding is allowed but

rotation and vertical movement are prohibited; the specimen free length Lf is measured

from the load line to the edge of the clamping fixture. The C-ELS specimen is loaded

normal to its thickness by a single vertical load P . The initial delamination length a0 is

measured from the load line to the artificially introduced delamination front. The C-ELS

tests were carried out in order to measure the nearly mode II fracture toughness of the

interface, which is shown in Fig. 1.1b. Note that the C-ELS specimens used here were

fabricated from the same seventh batch of material tested in Section 5.1 for the DCB

specimens.

5.2.1 Fracture test protocol

In this section, the C-ELS test protocol is presented. Specimen dimensions were measured

in the spirit of the ISO 15114 (2014) Standard. Measurements of the geometric parameters

of each C-ELS specimen, some of which are presented in Figs. 5.2b and 5.3a, were made. It

may be noted that in Fig. 5.3a, a DCB specimen is schematically presented. Nevertheless,

except for the upper load block, the geometric parameters of both specimens are the same.

The specimen height 2h was measured along the specimen center-line at five locations.

One location is behind the delamination front about 30 mm from the end of the specimen

where load blocks are attached. There are four locations ahead of the delamination front:

near the end of the PTFE film, about 30 mm from the other end of the specimen and at

two equally spaced locations in between, as presented schematically in Fig. 5.3a. These

measurements were made with a digital micrometer, which has a resolution of 0.001 mm.

At these locations, the specimen width b was measured with an electronic digital caliper

of resolution 0.01 mm. These measurements were carried out before a test was conducted.

According to the ISO 15114 (2014) Standard for UD material, the initial delamination

length a0 should be greater than 50 mm, so that the influence of the load block may be

neglected. In addition, the length of the specimen l should be at least a0 + 110 mm long,

meaning at least 160 mm long.

The ISO 15114 (2014) Standard recommends measuring the specimen width b at three

evenly spaced points along the specimen length. At these locations, thickness measure-

ments should be made along the specimen center-line. The variation in thickness along
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the specimen length shall not exceed 0.1 mm. It may be noted that here the measurements

were performed at locations of interest, as in the case of the DCB specimens in Section 5.1.

The initial delamination length a0 was measured from the center of the loading holes to

the end of delamination front on both specimen sides, front and back, with the Vision

Measuring Machine (model number iMS-2010; DongGuang, China), with a resolution of

0.0001 mm. The length of the specimen l was measured with a ruler.

White acrylic paint was applied to both sides of each specimen for easier delamination

front tracking. Prior to specimen painting, the delamination tip PTFE end was detected

and marked with the aid of a Carl ZeissTM microscope (model Stemi 2000-C stereomicro-

scope, Göttingen, Germany). After the acrylic paint dried, the specimens were placed in

a conditioning chamber (M.R.C. BTH80/-20, Holon, Israel) at least one week before a

test was carried out. This chamber was described in Section 5.1.1.

The C-ELS tests were carried out in two stages. In the first stage, an initial monotonically

rising displacement was applied at 1 mm/min to induce a natural delamination. This pre-

cracking procedure was carried out in nearly mode II deformation. After the delamination

propagates between 2 to 5 mm, unloading takes place at a rate of 5 mm/min. Unloading

is interrupted when the load reaches 3 N. A small residual load was chosen to prevent

accidental application of a load in the opposite direction. In the second stage, nearly

mode II deformation is applied to cause initiation and propagation of the natural pre-

cracked delamination. The displacement rate in this part of the test is 0.5 mm/min. At

the beginning of each test stage, the temperature and the RH in the Instron work area

were noted and their values were monitored continuously every 5 min throughout a test.

The displacement is controlled by an Instron loading machine (model number 8872, Bucks,

UK), according to the recommendations presented in the ISO 15114 (2014) Standard. The

load cell with a maximum load of 1000 N and a resolution of ±0.25% of the reading for a

load greater than 10 N was used. Automatic test instructions were written via the Instron

WaveMatrix computer software, which controls the Instron loading machine.

The free length for the pre-cracking stage, denoted by L0 and shown in Fig. 5.2b as Lf ,

was chosen as

L0 ≃
4

3
a0, (5.10)

in order to promote stable delamination propagation, as recommended in the ISO 15114

(2014) Standard. Prior to testing, the bolts of the clamping fixture were tightened accord-

ing to the ISO 15114 (2014) Standard recommendations with a torque of 8 Nm obtained

by means of a torque wrench and a level.

In the second stage of the test, the free length denoted by Lp and shown in Fig. 5.2b as

Lf , was chosen as
4

3
ap < Lp <

5

3
ap, (5.11)
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Figure 5.18: C-ELS fracture toughness test setup: (a) general view and (b) close-up.

where ap is the natural pre-delamination length that was obtained at the end of the

first stage of the test. This choice is made to provide sufficient length for delamination

propagation, as well as relatively stable delamination growth. The test is interrupted

when the delamination front is within 10 mm from the clamp. Next, the specimen was

unloaded to about 3 N at a rate of 5 mm/min.

The test setup is presented in Fig. 5.18. A close-up of the C-ELS test rig with a mounted

specimen is shown in Fig. 5.18b. The cross-head displacement and the applied load

are obtained by a computer which monitors the Instron machine. A LaVision system,

described in Section 4.1, is employed during the test. Prior to testing, the camera is

aligned using a level. During a test, images of the test specimen are taken at a rate of

2 Hz. The LaVision system enables synchronization between the Instron machine cross-

head displacement and load and the images of the specimen acquired by the LaVision

camera. In this way, the instantaneous applied load and displacement are displayed on

the appropriate image of the test specimen. A paper ruler is attached to each specimen

prior to testing. When the test analysis is performed, the ruler is used for calibration

and delamination tip tracking, as presented in Fig. 5.19 for specimen C-ELS-7-1.11. The

specimen identifier includes C-ELS which represents the test type; 7 which represents

the batch number; and 1.11, where the first number represents the row from which the

specimen was fabricated and the second number represents the position in the row.

At the end of each test stage, the total length of the delamination a was determined.

The total delamination propagation length is measured from the end of the PTFE film
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Delamination tip

Paper ruler

Figure 5.19: Image of the delamination in specimen C-ELS-7-1.11 during the second stage

of the C-ELS test, in which delamination is propagated from a natural delamination front,

captured via the LaVision digital camera.

to the delamination tip on both specimen sides, front and back, with the optical mode

of the Olympus confocal microscope. Then, the appropriate value was added to the

corresponding initial delamination length a0. All geometric parameters are used in the

FE model of each C-ELS specimen.

Prior to testing, calibration of the ELS fixture is recommended in the ISO 15114 (2014)

Standard. This procedure is performed by using a C-ELS specimen with a load block

attached to the bottom of its intact part, so that the delamination front is fully confined

within the clamping fixture and the specimen may be treated as one beam. It is suggested

to carry out this procedure with a beam free length of Lf = 110 mm and then to repeat

the procedure six more times with the beam clamped with free lengths of Lf = 100, 90,

80, 70, 60 and 50 mm. A cross-head displacement rate of 1 mm/min is recommended for

loading; the unloading rate of up to 10 mm/min is suggested. Here, the unloading part was

carried out at a rate of 5 mm/min. In addition, the specimen used for the calibration may

be reused for mode II testing, by bonding a load block to the bottom of the delamination

edge of the specimen. The suggested maximum applied load for the calibration procedure

is 250 N for CFRPs. Note that the ISO 15114 (2014) Standard recommends a specimen

thickness of 3 mm for specimens having a fiber volume fraction of 60% for UD carbon

fiber specimens. Here the specimens are made of MD carbon/epoxy plain woven plies,

where each ply has less than the 60% fiber volume fraction. It may be noted that here

the calibration procedure was performed with six beam free lengths of Lf = 100, 90, 80,

70, 60 and 50 mm; this specimen was not used again to avoid undesirable discrepancies.

In addition, the maximum applied load for the calibration procedure was set to 190 N.

At this load, a deflection of more than 10% of the beam free length was obtained for

Lf = 100 mm.
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The experimental data obtained from the ELS fixture calibration is analyzed for each

specimen free length Lf . The specimen compliance C for each value of Lf is calculated

from the linear slope of the loading part of each load-displacement curve. Then, values

of C are used to plot C1/3 versus Lf . A linear regression of the data points is performed

while extending the regression back to C1/3 = 0. The obtained line is expressed as

C1/3 = slope · L+ slope · |∆clamp| (5.12)

where

slope =

(
1

2bh3E1f

)1/3

(5.13)

and ∆clamp and E1f are the clamp correction parameter and the beam flexural modulus,

respectively. It may be recalled that the delamination considered here is along an inter-

face between two plain woven plies of different orientations in an MD laminate, where

the specimen arms or sub-laminates are of different thicknesses and different effective

mechanical properties, such as axial and flexural moduli. Therefore, some of the meth-

ods presented in the ISO 15114 (2014) Standard, which rely upon beam theory where

identical flexural moduli in all specimen laminate segments (upper sublaminate, lower

sublaminate and intact laminate) occur, are not applicable for determining the critical

interface energy release rate Gic for near mode II deformation. The calibration described

here is used for calibration of the FE models. The values for ∆clamp and E1f determined

experimentally serve as reference values in the adjustments of the FE models, which are

needed for correct representation of the clamping fixture in the FE analyses.

Since in each specimen the upper and lower arms are of different heights, these were

measured after a test was performed. It was not possible to measure them before a test.

The variation in the height of the specimen arms or sub-laminates along the interface is

presented in Fig. 5.6b, for specimen C-ELS-7-1.13. Recall that this was common to all

beam-type specimens. The height of the upper and lower sub-laminates hT and hB, re-

spectively, as illustrated in Fig. 5.3b, is measured at the approximate specimen center-line

at five locations along the specimen length with a digital micrometer. These measure-

ments are made at the same location at which the total height of the specimen, 2h, was

previously measured. As indicated in Section 5.1.1, the upper sub-laminate consists of 11

plies; whereas, the lower sub-laminate consists of 12 plies. Also, the measured values of

the height of the upper and lower arms are sensitive to the location at which the measure-

ment is taken, whether it is a localized peak or valley. Recall that this phenomenon does

not occur on the outer surfaces of each specimen, as a result of the manufacturing process

of the composite plate. Thus, the measured values of hT and hB were scaled according to

eqs. (5.1) and (5.2).
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5.2.2 Analysis

Five C-ELS specimens containing an artificial delamination and one specimen utilized

for calibration of the ELS fixture were tested based upon the protocol presented in

Section 5.2.1. The geometric parameters of the tested specimens, which are shown in

Figs. 5.2b and 5.3a, are presented in Table 5.10. The parameters with subscript 1 repre-

sent measurements behind the artificial delamination front, whereas parameters with sub-

scripts 2 to 5 represent measurements ahead of the delamination front. Average values of

specimen height and width denoted by 2h and b, respectively, are presented in Table 5.10.

It should be noted that the low values of the standard deviation (STD) demonstrate the

repeatability in specimen fabrication. According to the ISO 15114 (2014) Standard, the

thickness variation along the specimen length shall not exceed 0.1 mm. It may be found

that all specimens comply with this requirement. The measured values for the upper and

lower sub-laminates of the C-ELS specimens are presented in Tables G.1 and G.2. The

scaled values calculated by means of eqs. (5.1) and (5.2) appear in Tables G.3 and G.4.

Their averages, which also appear in Tables G.3 and G.4, were used in the FE model of

each C-ELS specimen. It should be noted that the evaluated average ply thickness of

Table 5.10: Geometric parameters of the C-ELS specimens.

specimen no. 2h1 (mm) 2h2 (mm) 2h3 (mm) 2h4 (mm) 2h5 (mm) 2h (mm) STD (mm)

C-ELS-7-1.4 5.02 4.98 4.97 4.99 4.99 4.99 0.02

C-ELS-7-1.10 4.94 4.96 4.94 4.96 4.96 4.95 0.01

C-ELS-7-1.11 4.97 4.98 4.98 4.97 4.98 4.98 0.00

C-ELS-7-1.12 4.97 4.98 4.96 4.97 4.98 4.97 0.01

C-ELS-7-1.13 4.98 4.99 4.96 5.00 4.99 4.98 0.01

C-ELS-7-1.14 4.99 4.98 4.95 4.97 4.98 4.97 0.01

specimen no. b1 (mm) b2 (mm) b3 (mm) b4 (mm) b5 (mm) b (mm) STD (mm)

C-ELS-7-1.4 20.14 20.25 20.32 20.33 20.35 20.28 0.08

C-ELS-7-1.10 20.26 20.29 20.29 20.26 20.25 20.27 0.02

C-ELS-7-1.11 20.40 20.41 20.40 20.38 20.25 20.37 0.06

C-ELS-7-1.12 20.36 20.33 20.31 20.31 20.27 20.32 0.03

C-ELS-7-1.13 20.32 20.29 20.3 20.25 20.26 20.28 0.03

C-ELS-7-1.14 20.30 20.29 20.25 20.30 20.28 20.28 0.02

specimen no. a
(f)
0 (mm) a

(b)
0 (mm) a0 (mm) |∆0| (mm) L0 (mm) l (mm)

C-ELS-7-1.4 - - - - - 199.5

C-ELS-7-1.10 50.58 50.30 50.44 0.28 67.0 199.5

C-ELS-7-1.11 50.26 50.50 50.13 0.26 66.5 200.0

C-ELS-7-1.12 49.82 50.26 50.04 0.44 67.0 200.0

C-ELS-7-1.13 49.80 49.51 49.66 0.29 66.0 199.5

C-ELS-7-1.14 49.38 49.57 49.47 0.19 66.0 200.0
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Table 5.11: Failure load at initial delamination propagation and final delamination length
of the C-ELS specimens for both test stages: first stage - initiation from the PTFE film
(APC), and second stage - initiation and propagation from the natural delamination.

Stage I: pre-cracking Stage II: propagation

PNL Pvis P5%/max ap |∆p| PNL Pvis P5%/max Lp af |∆f |

specimen no. (N) (N) (N) (mm) (mm) (N) (N) (N) (mm) (mm) (mm)

C-ELS-7-1.10 239.9 251.8 268.7 53.74 1.62 260.0 274.7 302.3 83.0 81.78 1.45
C-ELS-7-1.11 207.1 247.7 264.1 52.09 0.16 251.0 270.0 309.3 82.0 76.88 1.37
C-ELS-7-1.12 189.2 208.0 248.2 53.04 0.31 248.4 261.3 310.5 83.0 77.64 0.44
C-ELS-7-1.13 227.3 243.0 275.4 54.72 0.24 259.5 272.3 306.0 85.0 79.90 1.65
C-ELS-7-1.14 196.3 229.5 245.1 51.06 0.20 237.2 261.1 300.4∗ 81.0 73.43 0.64

Average 212.0 236.0 260.3 251.2 267.9 305.7
STD 19.0 15.9 11.8 8.4 5.7 3.9
CV 8.96% 6.73% 4.51% 3.33% 2.11% 1.27%

the 11 plies in the upper specimen arm or sub-laminate, which is calculated as hT/11,

is thinner than the evaluated average ply thickness of the 12 plies in the lower specimen

sub-laminate, which is calculated as hB/12. A typical difference of about 0.03 mm in the

average ply thickness between the upper and lower sub-laminates was obtained. Recall

that the nominal ply thickness is 0.22 mm. Nevertheless, those evaluated ply thicknesses

are within the valid range acceptable for this material and manufacturing process. In

addition, it may be noted that the dimensions of the C-ELS specimens as well as the

geometry of the load blocks were chosen so that the correction factors F and N presented

in the ISO 15114 (2014) Standard may be taken as unity.

The initial delamination length on the front and back sides of the specimen, a
(f)
0 and a

(b)
0 ,

respectively, as well as the average values of the initial delamination length a0 are also

presented in Table 5.10. It is observed that the absolute difference between a
(f)
0 and a

(b)
0 ,

denoted as |∆0| in Table 5.10, for each specimen is less than 2 mm. According to the ISO

15114 (2014) Standard, a0 should be approximately 50 mm long. Here, it satisfies this

requirement. The length of the specimens, l, is also presented in Table 5.10, and is seen

to be approximately 200 mm, which conforms with the standard. After each test stage

was carried out, the delamination length was measured on both sides of each specimen by

means of the optical mode of the Olympus confocal microscope. The average delamination

lengths which were measured at the end of each test stage, artificial pre-crack (APC) and

pre-crack (PC), are presented in Table 5.11, as ap and af , respectively. For each test

stage, it may be observed that the absolute difference between the final delamination

length on both sides of each specimen, denoted by |∆p| and |∆f |, is less than 2 mm for

all specimens.

Note, that for all C-ELS specimens the experimental data obtained for af was not used

since all average final delamination lengths were within less than 10 mm of the edge of
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(a) (b)

Figure 5.20: (a) Load versus displacement curves for the ELS fixture calibration proce-

dure. (b) Plot of C1/3 versus Lf .

the clamping fixture. The ISO 15114 (2014) Standard recommends using data which is

further away from the clamp. Nonetheless, the values related to af are presented, as well

as the absolute difference in the final delamination lengths |∆f | measured on both sides

of each specimen; they were seen to be less than 2 mm.

As recommended in the ISO 15114 (2014) Standard, prior to C-ELS testing a calibration

procedure of the ELS fixture was performed according to the protocol presented in Sec-

tion 5.2.1. The experimental data obtained for each specimen free length Lf was analyzed

and the specimen compliance C for each value of Lf was calculated from the linear portion

of the slope of the loading part of each load-displacement curve. The load-displacement

curves obtained for the procedure of the ELS fixture calibration are presented in Fig. 5.20a.

Values of C were used to plot C1/3 versus Lf , as shown in Fig. 5.20b. As may be ob-

served, a linear regression of the data points was performed extending the regression back

to C1/3 = 0. For specimen C-ELS-7-1.4 used for clamp calibration, the value of the clamp

correction parameter in eq. (5.12) was found to be ∆clamp = 18.43 mm; the value of the

beam flexural modulus in eq. (5.13) was found to be E1f = 47.72 GPa. These values were

used as reference values in calibration of the FE model.

The room temperature and relative humidity (RH) were recorded during the two stages

of the C-ELS tests, where each APC stage lasted about 15 minutes and each PC stage

lasted about an hour. The initial and final environmental conditions of each test stage
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Table 5.12: Temperature and relative humidity during C-ELS APC and PC test stages.

Stage I: pre-cracking Stage II: propagation

ϑinitial RHinitial ϑfinal RHfinal ϑinitial RHinitial ϑfinal RHfinal

specimen no. (◦C) (%) (◦C) (%) (◦C) (%) (◦C) (%)

C-ELS-7-1.4 22.4 36.3 22.5 36.0
C-ELS-7-1.10 22.3 42.5 23.6 48.4 23.3 46.4 23.4 49.1
C-ELS-7-1.11 23.2 39.3 23.1 38.4 23.8 39.2 23.8 41.9
C-ELS-7-1.12 23.5 38.2 23.8 41.4 23.8 37.1 24.9 39.2
C-ELS-7-1.13 23.4 42.5 23.3 43.9 23.4 44.2 23.3 48.8
C-ELS-7-1.14 22.5 44.2 23.1 46.1 22.9 47.5 23.1 45.0

are presented in Table 5.12. Recall that the ASTM Standard D 5528-13 (2014) requires

that the test temperature be 23± 3◦ C and the RH be 50± 10%. In Table 5.12, it may be

observed that eight out of the twenty two readings of the RH were below the recommended

values, whereas the temperature readings were within the required range.

The load-displacement curves obtained for the five C-ELS fracture toughness tests are

shown in Figs. 5.21a and 5.21b for the APC and PC stages, respectively. It may be

observed in Fig. 5.21b that there are regions of unstable delamination propagation, which

is characterized by a sharp decrease in the load. However, it is also observed that the

P (N)

d (mm)

P (N)

d (mm)

(a) (b)

Figure 5.21: Load versus displacement curves from fracture toughness tests of C-ELS

specimens, C-ELS-7-1.10 to C-ELS-7-1.14: (a) first test stage for delamination initiation

from PTFE film (APC) and (b) second test stage for initiation and propagation from

natural delamination (PC).
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delamination propagation in the C-ELS specimens is more stable than that within the

DCB specimens as shown in Fig. 5.7. According to the ISO 15114 (2014) Standard, the

initiation load at failure is determined in three ways: non-linear (NL), which is defined

as the point where a deviation from the linear load-displacement curve is observed while

ignoring any changes related to the initial activation of the loading system; visual (vis);

and 5% offset or maximum load (5%/max), whichever of the two occurs first. The 5%

offset represents an increase of 5% in the compliance from its initial value. The initiation

loads at failure, denoted by PNL, Pvis and P5%/max, are shown in Table 5.11 for each test

stage of the C-ELS specimens. The coefficient of variation (CV) is given by

CV =
STD

P
, (5.14)

where P is the average value of the loads and STD is its standard deviation. These values

are also presented in Table 5.11 for PNL, Pvis and P5%/max calculated for each of the C-ELS

test stages. As may be observed in Table 5.11, the variation in the loads decreases as the

average load value increases, i.e. the CV value of P5%/max is less than that of Pvis, which

is less than that calculated for PNL. It is also seen that the CV values of those loads

decrease in the second stage of the C-ELS test, in which the initiation and propagation

are obtained for specimens with a natural delamination front.

It should be noted that delamination propagation, as observed in the images, was not al-

ways straight forward; sometimes the delamination tip jumped several millimeters ahead.

It was found to be more stable than that for the DCB specimens, but still there were load

drops, corresponding to delamination propagation jumps as the delamination propagated.

Nevertheless, although it was sometimes difficult to determine the position of the delam-

ination tip from the specimen photographs, curve fitting of specimen compliance versus

delamination length was performed based upon the data obtained for visually detected

delamination lengths.

In a similar manner as that performed for the DCB specimens in Section 5.1.2, and

following the ISO 15114 (2014) Standard regarding beam theory, it may be shown that

C ∝ a3. Thus, the relationship between the delamination length and specimen compliance

may be expressed according to the experimental compliance method (ECM) presented in

the ISO 15114 (2014) Standard. The ECM expression may be rewritten as a power law

as given in eq. (5.4). The experimental data in Table G.8 was used along with eq. (5.4)

to generate the a versus C curve presented in Fig. 5.22. The values of g and C0 and the

coefficient of determination R2 were found as 206.36 (N ·mm2)
1/3

, 2.95·10−2 mm/N and

0.993, respectively. In Fig. 5.22, it may be observed that there is good agreement between

the measured and evaluated values of a. In addition, it may be seen from Figs. 5.22 and 5.8

that C for the C-ELS specimen is one order of magnitude less than that obtained for the

DCB specimens. The same procedure was performed separately with the experimental
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Figure 5.22: Correlation between delamination length and test compliance for specimen

C-ELS-7-1.10.

data of specimens C-ELS-7-1.10 to C-ELS-7-1.14. The delamination propagation data

of specimens C-ELS-7-1.10 to C-ELS-7-1.14 is presented in Tables G.8 through G.12, for

visually detected delamination lengths. It may be noted that in all C-ELS specimens, the

compliance obtained in the first stage of the C-ELS test was higher than that obtained

in the second stage of the test, in which the delamination propagated from a natural

delamination front, as mentioned in Davies et al. (1998). In Tables G.8 through G.12, as

well as in Table 5.13, the values of the parameters of eq. (5.4), g and C0, as well as the

coefficient of determination R2, are shown for each C-ELS specimen.

To analyze the C-ELS specimens by means of the FE method, several contact surfaces

were used. These include the delamination faces, as well as the specimen outer surfaces

where it was confined within the ELS clamping fixture. Two-dimensional FE analyses

with plane strain conditions were implemented by means of the ADINA (Bathe, 2011)

software. Use was made of eight noded isoparametric, quadrilateral elements. The square-

root singularity along the delamination front was modeled with quarter-point elements.

The oscillatory part of the singularity was not modeled. The material properties used to

characterize the plain woven plies with the yarn in the 0◦/90◦ and +45◦/− 45◦ directions

Table 5.13: Values of the fitting parameters in eq. (5.4) for the C-ELS specimens.

specimen no. g
([

N ·mm2
]1/3)

C0 (mm/N) R2

C-ELS-7-1.10 206.36 2.95 · 10−2 0.993

C-ELS-7-1.11 217.32 3.13 · 10−2 0.995

C-ELS-7-1.12 219.38 3.24 · 10−2 0.993

C-ELS-7-1.13 214.47 3.26 · 10−2 0.996

C-ELS-7-1.14 218.44 2.98 · 10−2 0.997
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Figure 5.23: Mesh of the C-ELS specimen: (a) illustration of the FE model constraints,

(b) detailed front view near the delamination tip, and (c) detailed view indicating the

locations where contact boundaries are applied; contact is implemented along the remain-

der of delamination faces and along both sides of the specimen where it is confined within

the clamping fixture.

are presented in Table 2.1. An example of a two-dimensional FE model is presented in

Fig. 5.23a, where the FE model was used in analyzing specimen C-ELS-7-1.10. The ELS

clamp fixture was modeled as shown in Figs. 5.23a and 5.23c, in which two rectangular

bodies are referred to as being flexible and stiff. Surface-to-surface contact interaction

was introduced along both sides of the specimen model between the stiff and flexible

clamps. The clamps were constrained to have the same displacement in the x1-direction;

displacement in the x2-direction was prohibited.

The lower clamp was modeled to be steel as shown in Table 5.14. At the first trial of

calibrating the FE model, the upper clamp was modeled to be steel and then its properties

were adjusted iteratively/manually. It should be noted that adjustment of the FE model

Table 5.14: Mechanical properties of the stiff and flexible clamps in Figs. 5.23a and 5.23c.

clamp E11 = E33 (GPa) E22 (GPa) G13 (GPa) G23 = G12 (GPa) ν13 ν23 = ν21

lower (stiff) 205.0 205.0 78.8 78.8 0.3 0.3
upper (flexible) 205.0 341.6 · 10−3 205.0 102.2 0.0 0.0
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for the upper clamp, was performed with the model generated for specimen C-ELS-7-1.4,

for which the calibration procedure was carried out. Recall that the artificial delamination

of specimen C-ELS-7-1.4 was confined within the ELS clamping fixture, so that only the

intact beam region of the specimen was examined. Thus in the FE model for specimen

C-ELS-7-1.4, contact surfaces were applied only where the specimen was between the

clamps.

The material properties of the upper clamp in the x1 and x3-directions were taken to

be stiff in order to avoid undesirable deformations that did not occur in the C-ELS

tests. Thus, the upper clamp was modeled to be tetragonal, where its material properties

were modified until reasonable agreement was obtained between the FEA results and the

calibration experimental data. These material properties are presented in Table 5.14.

The value of E22 was found to be equivalent to application of linear springs of stiffness of

17.1 N/m.

The FE models were analyzed for different values of model free length Lf . Although the

FE analyses for specimen C-ELS-7-1.4 were non-linear due to the contact surfaces and

large displacement, a linear relationship between the applied load and obtained deflection

was found. It may be noted that in each two-dimensional FE analysis, the applied load

from the calibration procedure P = 190 N was translated into a uniform distributed load

P/b, where b = 0.02028 m as given in Table 5.10, and then applied as a concentrated load

at the bottom of the specimen model, as schematically shown in Fig. 5.23a.

The FEA results for each model free length Lf were used to determine the corresponding

compliance C. The load-displacement curves obtained by means of the FEAs for the

ELS fixture calibration procedure are presented in Fig. 5.24a, in which the loading part of

each load-displacement curve obtained experimentally is also shown. The absolute percent

difference between the FE curves and the experimentally obtained curves varied between

1.0% and 4.4%. It may be noted that in Fig. 5.24a, for Lf = 70 mm, the experimentally

obtained curve is covered by the curve obtained from the FEA for this value of free length.

Next, values of C were used to plot C1/3 versus Lf , as shown in Fig. 5.24b.

As performed for the experimental data of specimen C-ELS-7-1.4, the values from the

FEAs for the flexural modulus E1f in eq. (5.13) and the clamp correction parameter

∆clamp in eq. (5.12) for C1/3 = 0 were determined as E1f = 53.69 GPa and ∆clamp =

21.45 mm. It may be recalled that these parameters were found as E1f = 47.72 GPa

and ∆clamp = 18.43 mm from the analysis of the experimental data of specimen C-ELS-7-

1.4. Although the flexural modulus is not applicable for determining the critical interface

energy release rate for the interface investigated here, it may be noted that this value is

close to the axial modulus E11 = E33 of the 0◦/90◦ direction plain woven ply in Table 2.1

given by E11 = 57.3 GPa. Since the content of the 0◦/90◦ direction plies in specimen
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Figure 5.24: (a) Comparison between the loading curves experimentally obtained from the

ELS clamp calibration procedure for specimen C-ELS-7-1.4 and load-displacement curves

obtained for specimen C-ELS-7-1.4 by means of FE analyses; (b) plot of C1/3 versus Lf

for the FEA calibration procedure. (c) Comparison between the load-displacement curves

obtained for specimen C-ELS-7-1.10 from both test stages, APC and PC, experimental

data and FEA results.
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layup is high, this is a reasonable result. In addition, this value is close to the flexural

modulus E1f = 52.95 GPa of the intact beam segment of specimen C-ELS-7-1.4, which

was calculated by means of classical laminate plate theory, as may be found in Ashton

and Whitney (1970).

In Fig. 5.24c the load-displacement curves are presented for two stages of the C-ELS

tests: APC and PC. These curves are for specimen C-ELS-7-1.10 which were obtained

from the experimental data and via the FEAs. In the FEAs, the maximum value of

the experimentally measured displacement was applied. In Fig. 5.24c, relatively good

agreement is observed between the experimental data and the FE results, in the linear

regions of the curves where delamination initiation or propagation are not suspected to

occur. In addition, in the second stage of the C-ELS test, it is observed that the FEA load-

displacement curve for specific values of visually detected delamination lengths coincide

with the experimental delamination propagation load-displacement curve at almost the

same locations. That is, for the same applied displacement, the value of the obtained

force calculated by means of the FEA is very close to the value of the force which was

measured during the test. The failure loads which were obtained by means of the FEAs

for the C-ELS specimens are also presented in Tables G.8 through G.12 for visually

detected delamination lengths. In Tables G.8 through G.12, it may be observed that good

agreement between the load values, obtained experimentally and by FEA, was found for

most delamination lengths in each C-ELS specimen. The maximum and minimum percent

differences between the values of these loads are summarized in Table 5.15. The largest

difference is 6%. Thus, it was concluded that the measured applied displacement and load,

as well as specimen attributes, were well represented and modeled in the FE analyses.

To demonstrate mesh convergence of the FE model inner mesh, a coarse, fine and finer

mesh were used with the geometric parameters of specimen C-ELS-7-1.10 in Table 5.10

with representative delamination lengths of a = 54.34 mm and a = 72.94 mm. The

in-plane dimensions of the elements in the vicinity of the delamination front were set to

1.02 · 10−4 × 1.02 · 10−4 m2, 5.09 · 10−5 × 5.09 · 10−5 m2 and 2.55 · 10−5 × 2.55 · 10−5 m2,

Table 5.15: Maximum and minimum percent difference (in absolute value) between the
values of the load obtained experimentally and by FEA for visually detected delamination
lengths in the C-ELS specimens, as presented in Tables G.8 through G.12.

specimen no. max. % min. %

C-ELS-7-1.10 6.0 0.4

C-ELS-7-1.11 4.2 0.2

C-ELS-7-1.12 3.7 0.0

C-ELS-7-1.13 4.7 0.2

C-ELS-7-1.14 4.2 0.6
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Table 5.16: Characteristics of the four meshes which were used in the convergence study
of the C-ELS specimen.

mesh no. of no. of element in-plane size near in-plane

elements nodes delamination front (m2) aspect ratio

coarse 4,942 15,366 1.02 · 10−4 × 1.02 · 10−4 1.0

fine 5,218 16,206 5.09 · 10−5 × 5.09 · 10−5 1.0

finer 5,538 17,180 2.55 · 10−5 × 2.55 · 10−5 1.0

modified fine 5,196 16,142 5.09 · 10−5 × 5.09 · 10−5 1.0

upper ply elements

5.09 · 10−5 × 5.65 · 10−5 1.11

lower ply elements

in a similar manner as shown in Figs. 5.10a, 5.10b and 5.10c, respectively. A modified

fine mesh similar to that shown in Fig. 5.10d, in which the ply thickness of the upper and

lower plies which define the interface were divided into 4 elements along their thickness,

was also generated. In that mesh, the in-plane dimensions of the elements in the vicinity

of the delamination front were set to 5.09 · 10−5 × 5.09 · 10−5 m2 in the upper ply and

5.09 · 10−5×5.65 · 10−5 m2 in the lower ply. Thus, an in-plane aspect ratio of 1.0 and 1.11

was obtained, respectively, as shown in Figs. 5.23b and 5.10d. Since each specimen arm

was of different height and the upper and lower arms of each specimen were found to be

of different ply thicknesses, as discussed in the beginning of Sections 5.1.2 and 5.2.2, the

sizes of the elements were appropriately adjusted in each specimen model. The in-plane

aspect ratio of the elements at the bottom of the lower ply in the coarse mesh as shown

in Fig. 5.10a is 4.59; for the fine and finer meshes as shown in Figs. 5.10b and 5.10c, the

in-plane aspect ratio of some of those elements is 2.29 and 4.59. Some characteristics of

the FE meshes which were used in the convergence study are given in Table 5.16.

The stress intensity factors were calculated for each mesh by means of the DE method,

which was presented in Section 3.1. The displacement from the experimental data was

applied in all FEAs, each model with a suitable displacement according to its delamination

length. The stress intensity factors were calculated for each delamination length and

each mesh type. The location in which the square-root of the sum of the coefficient of

determination of both in-plane stress intensity factors, K1 and K2, was the closest to

value of
√
2 was chosen for determination of the values of K1 and K2. It may be noted

that the distance from the delamination tip, in which the values of K1 and K2 were

chosen, occurred at different positions along the delamination. Ordinary units for the in-

plane stress intensity factors K̂1 and K̂2 were obtained by employing eq. (4.9) with length

parameter L̂ = 100 µm, as described in Section 4.4.2. Since plane strain conditions were
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assumed, which means that KIII = 0, the out-of-plane phase angle φ in eq. (1.14) was

determined as φ = 0. The in-plane phase angle ψ̂ in eq. (1.12) was calculated for each

mesh type and each delamination length a.

Solution convergence is examined in Table 5.17, in which the differences between the

interface energy release rate Gi calculated by means of the J-integral in Adina (Bathe,

2011). It may be noted that delamination face opening was obtained near the delamination

tip for at least a distance of 2.95 mm and 3.21 mm from the delamination tip with a

delamination length of a = 54.34 mm and a = 72.94 mm, respectively. The normalized

in-plane stress intensity factors and the corresponding in-plane phase angle ψ̂ obtained for

pairs of meshes are also presented. For each pair of meshes, the mesh which is more refined

in the vicinity of the delamination front serves as the reference (ref) in eq. (4.8). It should

be noted that the maximum percent differences shown in Table 5.17 occurred at different

positions along the delamination faces. It may be observed that convergence is obtained

for both delamination lengths a = 54.34 mm and a = 72.94 mm. It may be recalled that

the values calculated by means of the DE method are less accurate. Nonetheless, the

differences in all parameter values presented in Table 5.17 are relatively small, especially

the values for ψ̂. Since the absolute value of the maximum percent difference for both

delamination lengths between the fine and the finer mesh and also between the modified

fine and the finer mesh is less than 0.2%, it may be concluded that the modified fine

mesh shown in Fig. 5.10d may be used in all FE models in this study. Although, the

DE method is less accurate than the M-integral, it still reproduces relatively satisfying

results.

It should be noted that another FE model of the modified fine mesh in Fig. 5.23b was

generated for specimen C-ELS-7-1.10 with delamination lengths of a = 54.34 mm and

a = 72.94 mm. This is the same specimen and the same delamination lengths used

in the convergence study in the region of the delamination tip. Mesh refinement was

performed in regions away from the delamination tip; additional elements were included,

at a distance which is between 6 to 61 ply thicknesses behind the delamination tip. These

Table 5.17: Maximum percent difference (in absolute value) between the energy release
rate Gi calculated by means of the J-integral in Adina (Bathe, 2011), normalized in-plane
stress intensity factors with L̂ = 100 µm calculated by DE and in-plane phase angle ψ̂ for
pairs of meshes.

percent difference

meshes coarse and fine fine and finer modified fine and finer

delamination Gi K̂1 K̂2 ψ̂ Gi K̂1 K̂2 ψ̂ Gi K̂1 K̂2 ψ̂

a = 54.34 mm 0.15 0.15 0.12 0.0011 0.0040 0.084 0.067 0.0006 0.0043 0.098 0.078 0.0007
a = 72.94 mm 0.16 0.19 0.12 0.0014 0.0067 0.130 0.085 0.0010 0.0072 0.143 0.094 0.0011
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refined models contained 5,484 plane strain 2D solid elements and 17,038 nodal points

with a delamination tip region as shown in Fig. 5.23b. Far from the delamination front,

a maximum in-plane element aspect ratio of 1 to 17.5 and 1 to 27.6 throughout the FE

model was permitted, for the FE models with delamination lengths of a = 54.34 mm and

a = 72.94 mm, respectively. The properties of these meshes may be compared to that of

the modified fine meshes in Table 5.16. For the strain energy release rate calculated by

ADINA (Bathe, 2011), for both delamination lengths, it was found that the maximum

percent difference between the refined mesh and the original modified fine mesh is less than

8.0 · 10−4 %. Thus, it was concluded that the bending motion is sufficiently characterized

by the original modified fine mesh.

Based upon the convergence study for the inner and outer FE meshes presented above, the

modified fine mesh is employed for all C-ELS specimens. In the same manner as for the

DCB FE models, the modified fine mesh as shown in Figs. 5.9b and 5.23 was employed, as

detailed in Table 5.16. Finite element models were generated for all delamination lengths,

which were visually observed in the images of each C-ELS specimen, as acquired during

the tests. The delamination lengths, which were modeled, varied between 49.47 mm ≤
a ≤ 74.66 mm. In each C-ELS FE model, for each delamination length a, the appropriate

displacement value from the experimental data, was applied incrementally on the bottom

of the FE model; each displacement increment was 10% of the total displacement. The

FE model boundary conditions and restraints are illustrated in Fig. 5.23a. In order to

eliminate delamination face interpenetration, surface-to-surface contact interaction was

introduced along most of the span of the delamination faces, except for the region in

the vicinity of the delamination tip as shown in Fig. 5.23b in which the contact regions

are surrounded by the dashed ellipses. This is in addition to the contact interaction

implemented along the specimen confinement region, which is characterized by the flexible

and stiff clamps in Fig. 5.23c. All FE meshes contained 5,196 plane strain 2D solid

elements and 16,142 nodal points. A maximum element aspect ratio of 1 to 12.7 was

permitted between the delamination front and a distance of about 61 ply thicknesses ahead

and behind the delamination front. In regions very far from expected stress concentrations

(such as load application points, reactions, delamination front, etc.), an element aspect

ratio varied between 1 to 15.8 and 1 to 28.3 was permitted. It is recalled that ply groups

consisting of several plies of the same plain woven material is assumed to serve as a single

plain woven ply with the same mechanical properties presented in Table 2.1, with a total

thickness of all plies in the ply group.

For each FE analysis of each C-ELS specimen model, the resultant load was calculated by

multiplying the FE result for the uniformly distributed load with the specimen average

width b in Table 5.10. It may be noted that a linear relationship between the displacement

and resultant load was found in each step of each FE analysis, as may be seen in Fig. 5.24c
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Figure 5.25: The in-plane phase angle ψ̂ versus a with L̂ = 100 µm obtained by means of

the DE method for the C-ELS specimens.

for specimen C-ELS-7-1.10. In addition, it was observed that the value of the compliance

in eq. (5.4) obtained by means of the FEM was very close to the value retrieved from the

experimental data.

The stress intensity factors, obtained for the modified fine mesh, were calculated by means

of the DE method, which was presented in Section 3.1. Ordinary units for the in-plane

stress intensity factors K̂1 and K̂2 were obtained by employing eq. (4.9) with length

parameter L̂ = 100 µm, as described in Section 4.4.2. Recall that plane strain conditions

were assumed, henceKIII = φ = 0. The in-plane phase angle ψ̂ in eq. (1.12) was calculated

for each delamination length a of each C-ELS specimen. Despite the scatter, it may be

observed that the values of ψ̂ in Fig. 5.25 are relatively close to the value of π/2 for every

value of a. Hence, the contribution of K̂1 to the total interface energy release rate Gi is
negligible. It may be noted that the upper left most points in Fig. 5.25 are the obtained

values of ψ̂ which are related to the APC stage of the test of each C-ELS specimen. Since

it was found that for the C-ELS specimens K̂2 is dominant, whereas the other stress

intensity factors may be neglected, the interface energy release rate Gi may be treated as

the mode II energy release rate GII .

It may be noted that the Gi(a) values, which are used, were those obtained via the

J-integral calculation embedded within ADINA software (Bathe, 2011). Despite the in-

accuracies that might be encountered by using the DE method, the maximum percent

differences (in absolute value) between the values of Gi(a) obtained via the J-integral in

ADINA and those calculated by means of the DE method and eq. (1.17) with KIII = 0

were found to be less than 0.4%. Nonetheless, the Gi(a) obtained via the J-integral in

ADINA were used for determining the values of GIIc, as well as GIIR.

It may be noted that non-linear FEAs including contact interaction surfaces and large
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Figure 5.26: The scaled in-plane stress intensity K̂2 versus a with an applied load P FEA =

20 N and L̂ = 100 µm obtained by means of the DE method for the C-ELS specimens.

displacements were performed for each C-ELS specimen. As mentioned above, a linear

relationship between the displacement and resultant load was found in each step of each

FEA, as presented for specimen C-ELS-7-1.10 in Fig. 5.24c. Thus, it is interesting to note

that a linear relationship was found between the delamination length a and the normal-

ized in-plane stress intensity K̂2 calculated by means of the DE method, as presented in

Fig. 5.26. To this end, the values of K̂2 were scaled; the maximum load obtained in the

FEA was used as P Test with P FEA = 20 N in eq. (5.6)1. The lower left most points in

Fig. 5.26 are those obtained in the APC stage of the C-ELS test. The location of each of

these points seems to be along the linear relation, which was obtained from the PC stage

experimental data of the C-ELS test.

5.2.3 Results

Based upon the data in Tables G.8 to G.12, a GIIR-curve was generated. The values of

GIIR versus ∆a = a−a0 are plotted in Fig. 5.27. An initiation fracture toughness is shown

for ∆a = 0 as GIIc = 889.1 N/m, which is the nearly mode II average critical interface

energy release rate for delamination growth from the PTFE insert obtained for specimens

C-ELS-7-1.10 through C-ELS-7-1.14. It may be observed that the values of GIIR increase

with ∆a until a steady state value of GIIss = 2352.6 N/m is reached for ∆a = 9 mm.

Fitting the points between 0 ≤ ∆a ≤ 9 mm results in the expression given by

GIIR = 162.6 ·∆a + 889.1 (5.15)

where ∆a in eq. (5.15) is measured in millimeters. The coefficient of determination R2

for eq. (5.15) and the plotted points was found to be 0.84. Also, it may be observed that
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Figure 5.27: Fracture resistance curve: the critical interface energy release rate, referred

as GIIR, as a function of delamination propagation length ∆a = a− a0.

for 9 mm ≤ ∆a ≤ 25 mm, most of the GIIR data points are within one standard deviation

from the GIIss line; the value of one STD was found to be 139.5 N/m.

For the C-ELS specimens, an average value of GIIc = 889.1 N/m was obtained with ψ̂ =

0.49π. It may be noted that this value is somewhat lower than the average critical value

for fracture toughness Gic = 1006.8 N/m for this phase angle obtained by means of the BD

tests in Section 4.5. This value may be observed in the failure curve presented in Fig. 4.18.

In Mega and Banks-Sills (2019), an MD carbon/epoxy composite was studied. There, the

value of the average critical energy release rate Gic = 1002.5 N/m for ψ̂ = 0.46π obtained

by means of BD specimens with an approximate thickness of 16.6 mm. Furthermore, in

Mega and Banks-Sills (2020), C-ELS specimens which were 5 mm thick and fabricated

from the same material and interface as in Mega and Banks-Sills (2019) were tested. The

average critical energy release rate Gic = 829.9 N/m was found for ψ̂ = 0.46π.

Despite the differences which may be related to the scatter, it appears that for nearly

mode II deformation, the values of the critical energy release rate for initiation GIIc are
less affected by specimen thickness. This is in contrast to the nearly mode I deformation,

where GIc was found to be sensitive to specimen thickness.
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5.3 MMELS

Five quasi-static tests of delamination initiation and propagation were carried out on

MMELS specimens with the layup shown in Fig. 5.1. An illustration of a MMELS speci-

men is presented in Fig. 5.2c, where the geometric parameters l, b and 2h are the specimen

length, width and height, respectively. In Fig. 5.2c, the right side of the specimen is con-

strained by means of a clamping fixture, so that free horizontal sliding is allowed but

rotation and vertical movement are prohibited; the specimen free length Lf is measured

from the load line to the edge of the clamping fixture. The MMELS specimen is loaded

normal to its upper arm through displacement control. The initial delamination length

a0 is measured from the load line to the artificially introduced delamination front. The

MMELS tests were carried out in order to measure the fracture toughness for one mixed

mode ratio of the interface, which is shown in Fig. 1.1b. Note that the MMELS specimens

used here were fabricated from the same seventh batch of material tested in Sections 5.1

and 5.2 for the DCB and C-ELS specimens, respectively. In Section 5.3.1, the fracture

test protocol is presented. The specimens were analyzed by means of the FEM and three-

dimensional M-integral. Analyses are presented in Section 5.3.2; whereas, the results are

described in Section 5.3.3.

5.3.1 Fracture test protocol

In this section, the MMELS test protocol is presented. It is based upon the procedure

presented in Blackman et al. (2001), which is used for determining the mixed mode

I/II delamination resistance of UD FRP laminates by means of the asymmetric double

cantilever beam (ADCB). It may be noted that the MMELS test is also called the ADCB

or fixed-ratio mixed-mode (FRMM) test.

The C-ELS fracture test protocol in Section 5.2.1 was followed here except for several

differences mentioned below. The length of the specimen l should be greater than a0 +

110 mm long, meaning greater than 160 mm long. A length of 170 mm is recommended

in Blackman et al. (2001).

The Instron loading machine used for all other tests was used here, as well. The load cell

with a maximum load of 250 N and a resolution of ±0.25% of the reading for a load greater

than 2.5 N was used. Prior to testing, the bolts of the clamping fixture were tightened as

specified in Section 5.2.1 for the C-ELS specimens. The MMELS tests were carried out

in two stages. The free length for both test stages, denoted by Lf and shown in Fig. 5.2c

is 100 mm, which corresponds to the suggestion in Blackman et al. (2001) regarding

promotion of stable delamination propagation for Lf < 2.44a. In the first stage, an initial

monotonically increasing displacement was applied at 0.5 mm/min to induce a natural
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Figure 5.28: MMELS fracture toughness test setup: (a) general view and (b) close-up.

delamination. After delamination propagation was observed, unloading took place at a

rate of 5 mm/min. Unloading was interrupted when the load reached 3 N. In the second

stage, with propagation from the natural delamination, the displacement rate was the

same as for the initial stage. The test was interrupted when the delamination front was

within 10 mm from the clamp. Next, the specimen was unloaded to about 3 N at a rate of

5 mm/min. It may be noted that in both test stages, a constant cross-head rate between

1 and 5 mm/min is recommended in Blackman et al. (2001) for loading; for unloading,

the displacement rate should be limited to 25 mm/min. Since it was found to be very

difficult to follow delamination propagation in both test stages, the displacement rate of

0.5 mm/min was employed here. At the beginning of each test stage, the temperature and

the RH in the Instron work area were noted and their values were monitored continuously

every 5 min throughout a test.

The test setup is presented in Fig. 5.28. A close-up of the MMELS test rig with a mounted

specimen is shown in Fig. 5.28b. The test system for the MMELS tests is similar to that

used in the C-ELS tests, as described in Section 5.2.1. Here, another LaVision camera

was employed in order to capture the delamination tip from both sides of the specimen.

During a test, images of the test specimen were taken at a rate of 3 Hz.

In Fig. 5.29a, specimen MMELS-7-1.9 with the delamination tip captured from its front

side, as well as the paper ruler attached to the specimen, are shown. The specimen

identifier includes MMELS which represents the test type; 7 which represents the batch

number; and 1.9, where the first number represents the row from which the specimen
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Figure 5.29: Images of the delamination in specimens (a) MMELS-7-1.9 and (b) MMELS-

7-1.5 during the second stage of the MMELS test, in which delamination is propagated

from a natural delamination front, captured via the LaVision digital camera.

was fabricated and the second number represents the position in the row. Speckles,

which were used in the digital image correlation (DIC) method, were spread over the

front and back sides of the remaining four MMELS specimens. The program used for

DIC analysis is an additional modula within DaVis (2015) software. The DIC was not

employed for determining the displacement or strain fields quantitatively in the vicinity

of the delamination tip. It was applied only for easier tracking and detection of the

delamination tip in the images of the specimen acquired during the test, since it was

found difficult to locate the correct position of the delamination tip. The back side of

specimen MMELS-7-1.5 is presented in Fig. 5.29b, in which the strain field in the opening

direction was adjusted manually in order to capture the delamination tip while minimizing

inaccuracies.

For the specimen without speckles, the total length of the delamination a was determined

at the end of each test stage, as done for the C-ELS specimens in Section 5.2.1. For

specimens with speckles on both sides of each specimen, the delamination length a for the

first and the second stages of the test was determined from the images taken from both

sides of the specimen. The total delamination length a was verified at the end of second

test stage by means of the Olympus confocal microscope. All geometric parameters are

used in the FE model of each MMELS specimen.
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As with the DCB and C-ELS specimens, in each specimen the upper and lower arms are

of different heights, these were measured after a test was performed. The variation in the

height of the specimen arms or sub-laminates along the interface is presented in Fig. 5.6a,

for specimen MMELS-7-1.7. Recall that this was common to all beam-type specimens.

The height of the upper and lower sub-laminates hT and hB, respectively, as illustrated in

Fig. 5.3b, was measured as presented in Sections 5.1.1 and 5.2.1 for the DCB and C-ELS

specimens, respectively.

5.3.2 Analysis

Five MMELS specimens containing an artificial delamination were tested based upon the

protocol presented in Section 5.3.1. The geometric parameters of the tested specimens,

which are shown in Figs. 5.2c and 5.3a, are presented in Table 5.18. The parameters

with subscript 1 represent measurements behind the artificial delamination front, whereas

parameters with subscripts 2 to 5 represent measurements ahead of the delamination

front. Average values of specimen height and width denoted by 2h and b, respectively,

are presented in Table 5.18. It should be noted that the low values of the standard

deviation (STD) demonstrate the repeatability in specimen fabrication. According to

Blackman et al. (2001), the thickness variation along the specimen length shall not

Table 5.18: Geometric parameters of the MMELS specimens.

specimen no. 2h1 (mm) 2h2 (mm) 2h3 (mm) 2h4 (mm) 2h5 (mm) 2h (mm) STD (mm)

MMELS-7-1.5 5.04 5.03 5.01 5.01 5.03 5.02 0.01

MMELS-7-1.7 5.00 4.98 4.95 4.96 4.97 4.97 0.02

MMELS-7-1.9 4.95 4.98 4.95 4.96 4.95 4.96 0.01

MMELS-7-1.17 4.94 4.94 4.94 4.94 4.95 4.94 0.00

MMELS-7-1.18 4.99 4.97 4.95 4.98 4.97 4.97 0.01

specimen no. b1 (mm) b2 (mm) b3 (mm) b4 (mm) b5 (mm) b (mm) STD (mm)

MMELS-7-1.5 20.42 20.40 20.42 20.33 20.32 20.38 0.04

MMELS-7-1.7 20.30 20.32 20.32 20.29 20.27 20.30 0.02

MMELS-7-1.9 20.37 20.39 20.35 20.32 20.31 20.35 0.03

MMELS-7-1.17 20.24 20.24 20.23 20.22 20.21 20.23 0.01

MMELS-7-1.18 20.38 20.39 20.35 20.35 20.21 20.34 0.06

specimen no. a
(f)
0 (mm) a

(b)
0 (mm) a0 (mm) |∆0| (mm) Lf (mm) l (mm)

MMELS-7-1.5 50.78 50.23 50.50 0.55 100.0 200.0

MMELS-7-1.7 51.24 51.16 51.20 0.08 100.0 199.8

MMELS-7-1.9 50.58 50.80 50.69 0.12 100.0 200.0

MMELS-7-1.17 51.10 51.31 51.20 0.21 100.0 200.0

MMELS-7-1.18 51.33 51.12 51.22 0.21 100.0 199.5
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Table 5.19: Failure load at initial delamination propagation and final delamination length
of the MMELS specimens for both test stages: first stage - initiation from the PTFE film
(APC), and second stage - initiation and propagation from the natural delamination.

Stage I: pre-cracking Stage II: propagation

PNL Pvis P5%/max ap |∆p| PNL Pvis P5%/max af |∆f |
specimen no. (N) (N) (N) (mm) (mm) (N) (N) (N) (mm) (mm)

MMELS-7-1.5 78.5 96.0 109.3 54.05 0.55 99.5 102.3 106.2 92.52 1.20
MMELS-7-1.7 79.9 89.1 107.2 54.95 0.43 92.3 102.9 103.5 93.30 0.28
MMELS-7-1.9 80.8 81.1 95.5 54.29 0.27 99.8 101.7 112.4 90.15 0.18
MMELS-7-1.17 79.1 89.7 98.3 52.10 0.01 93.8 98.4 105.2 93.56 0.34
MMELS-7-1.18 84.2 98.8 106.9 54.27 0.52 89.5 93.9 110.0 91.95 0.37

Average 80.5 90.9 103.4 95.0 99.8 107.5
STD 2.0 6.2 5.5 4.1 3.4 3.3
CV 2.49% 6.76% 5.29% 4.27% 3.36% 3.04%

exceed 0.1 mm. It may be found that all specimens comply with this requirement. The

measured values for the upper and lower sub-laminates of the MMELS specimens are

presented in Tables G.1 and G.2. The scaled values calculated by means of eqs. (5.1)

and (5.2) appear in Tables G.3 and G.4. Their averages, which also appear in Tables G.3

and G.4, were used in the FE model of each MMELS specimen. It should be noted

that the evaluated average ply thickness of the 11 plies in the upper specimen arm or sub-

laminate, which is calculated as hT/11, is thinner than the evaluated average ply thickness

of the 12 plies in the lower specimen sub-laminate, which is calculated as hB/12. A typical

difference of about 0.03 mm in the average ply thickness between the upper and lower sub-

laminates was obtained. Recall that the nominal ply thickness is 0.22 mm. Nevertheless,

those evaluated ply thicknesses are within the valid range acceptable for this material and

manufacturing process. In addition, it may be noted that the dimensions of the MMELS

specimens as well as the geometry of the load blocks were chosen so that the correction

factors F and N presented in Blackman et al. (2001) may be taken as unity.

The initial delamination length on the front and back sides of the specimen, a
(f)
0 and

a
(b)
0 , respectively, as well as the average values of the initial delamination length a0 are

also presented in Table 5.18. It is observed that the absolute difference between a
(f)
0

and a
(b)
0 , denoted as |∆0| in Table 5.18, for each specimen is less than 2 mm, which

complies with Blackman et al. (2001). According to Blackman et al. (2001), a0 should be

approximately 50 mm. Here, it satisfies this requirement. The length of the specimens, l,

is also presented in Table 5.18, and is seen to be approximately 200 mm, which conforms

with Blackman et al. (2001). After each test stage was carried out, the delamination

length was measured on both sides of each specimen by means of the optical mode of the

Olympus confocal microscope. The average delamination lengths at the end of each test

stage, artificial pre-crack (APC) and pre-crack (PC), are presented in Table 5.19, as ap

and af , respectively. For each test stage, it may be observed that the absolute difference
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Table 5.20: Temperature and relative humidity during MMELS APC and PC test stages.

Stage I: pre-cracking Stage II: propagation

ϑinitial RHinitial ϑfinal RHfinal ϑinitial RHinitial ϑfinal RHfinal

specimen no. (◦C) (%) (◦C) (%) (◦C) (%) (◦C) (%)

MMELS-7-1.5 22.2 43.9 22.2 43.3 22.4 43.2 22.7 42.8
MMELS-7-1.7 22.4 44.3 22.3 44.8 22.3 45.7 22.2 44.1
MMELS-7-1.9 23.2 50.8 22.9 45.9 23.1 45.2 23.5 47.6
MMELS-7-1.17 23.2 43.9 23.3 43.3 23.1 43.4 22.9 44.4
MMELS-7-1.18 23.1 44.6 23.3 43.6 23.0 44.7 23.2 45.0

between the final delamination length on both sides of each specimen, denoted by |∆p|
and |∆f |, is less than 2 mm for all specimens, as required in Blackman et al. (2001).

Note, that for all MMELS specimens the experimental data obtained for af was not used

since all average final delamination lengths were within less than 10 mm of the edge of

the clamping fixture. In Blackman et al. (2001) it is recommended using data which is

further away from the clamp. Nonetheless, the values related to af are presented, as well

as the absolute difference in the final delamination lengths |∆f | measured on both sides

of each specimen; they were seen to be less than 2 mm.

The room temperature and relative humidity (RH) were recorded during the two stages

of the MMELS tests, where each APC stage lasted about 20 minutes and each PC stage

lasted about an hour. The initial and final environmental conditions of each test stage are

presented in Table 5.20. The test temperature should be 23± 3◦ C and the RH, 50± 10%,

according to Blackman et al. (2001). In Table 5.20, it may be observed that the readings

of the temperature and RH were within the required range.

The load-displacement curves obtained for the five MMELS fracture toughness tests are

shown in Figs. 5.30a and 5.30b for the APC and PC stages, respectively. It may be

observed in Fig. 5.30b that there are regions of unstable delamination propagation, which

is characterized by a sharp decrease in the load. However, it is also observed that the

delamination propagation in the MMELS specimens is less stable than that within the

C-ELS specimens as shown in Fig. 5.21. The abrupt load drops in the curves in Fig. 5.30b

are similar to those observed in the DCB specimens, as presented in Fig. 5.7. According

to Blackman et al. (2001), the initiation load at failure is determined in three ways: NL,

vis and 5%/max, in the same manner as was determined for the C-ELS specimens in

Section 5.2.2. The initiation loads at failure, denoted by PNL, Pvis and P5%/max, are shown

in Table 5.19 for each test stage of the MMELS specimens.

In a similar manner as that performed for the DCB and C-ELS specimens in Sections 5.1.2

and 5.2.2, respectively, and following Blackman et al. (2001) regarding beam theory, it

may be shown that the compliance C ∝ a3. Thus, the relationship between the delami-

nation length and specimen compliance may be expressed according to the experimental
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Figure 5.30: Load versus displacement curves from fracture toughness tests of MMELS

specimens, MMELS-7-1.5, MMELS-7-1.7, MMELS-7-1.9, MMELS-7-1.17 and MMELS-7-

1.18: (a) first test stage for delamination initiation from PTFE film (APC) and (b) second

test stage for initiation and propagation from the natural delamination (PC).

compliance method (ECM) presented in Blackman et al. (2001). The ECM expression

may be rewritten as a cube root power law as given in eq. (5.4). The experimental data

in Table G.13 was used along with eq. (5.4) to generate the a versus C curve presented

in Fig. 5.31. The values of g and C0 and the coefficient of determination R2 were found

as 146.66 (N ·mm2)
1/3

, 4.10·10−2 mm/N and 0.998, respectively. In Fig. 5.31, it may be

observed that there is good agreement between the measured and evaluated values of a.

In addition, it may be observed in Figs. 5.31 and 5.8 that C for the MMELS specimen

is smaller than that for the DCB specimens. However, the compliance of the MMELS

specimen is greater than that obtained for the C-ELS specimen in Fig. 5.22. The same

procedure of curve fitting to eq. (5.4) was performed separately with the experimen-

tal data of specimens MMELS-7-1.7, MMELS-7-1.9, MMELS-7-1.17 and MMELS-7-1.18.

The delamination propagation data for all MMELS specimens is presented in Tables G.13

through G.17, for visually detected and for a few evaluated delamination lengths. In Ta-

bles G.13 through G.17, as well as in Table 5.26, the values of the parameters of eq. (5.4),

g and C0, and the coefficient of determination R2, are shown for each MMELS specimen.

All MMELS specimens were analyzed by means of the FE method using the ADINA
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Figure 5.31: Correlation between delamination length and test compliance for specimen

MMELS-7-1.5.

(Bathe, 2011) software. The three-dimensional FEmodels contained twenty noded isopara-

metric, brick elements. In order to model the square-root singularity along the delam-

ination front, quarter-point elements were used. The oscillatory part of the singularity

was not modeled. The mechanical properties used to characterize the plain woven plies

with the yarn in the 0◦/90◦ and +45◦/ − 45◦ directions are presented in Table 2.1. An

example of a three-dimensional FE model is presented in Fig. 5.32c, where the FE model

was used in analyzing specimen MMELS-7-1.5. The in-plane dimensions of the elements

in the vicinity of the delamination front of the specimen MMELS-7-1.5 model were set

to 5.16 · 10−5 × 5.16 · 10−5 m2 in the upper ply and 5.16 · 10−5 × 5.73 · 10−5 m2 in the

lower ply. Thus, an in-plane aspect ratio of 1.0 and 1.11 was obtained, respectively, as

shown in Fig. 5.32b. The FE model boundary conditions and restraints are illustrated in

Fig. 5.32a. Contact interaction was implemented along the specimen and clamps; one of

which is flexible and one is stiff as seen in Fig. 5.32c. The mechanical properties of the

clamps are the same as employed in the FEAs of the C-ELS specimens, as those presented

in Table 5.14.

Table 5.21: Values of the fitting parameters in eq. (5.4) for the MMELS specimens.

specimen no. g
([

N ·mm2
]1/3)

C0 (mm/N) R2

MMELS-7-1.5 146.66 4.10 · 10−2 0.998

MMELS-7-1.7 147.04 4.36 · 10−2 0.997

MMELS-7-1.9 148.96 4.05 · 10−2 0.999

MMELS-7-1.17 146.01 4.48 · 10−2 0.999

MMELS-7-1.18 144.91 4.16 · 10−2 0.999
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Figure 5.32: Mesh of the MMELS specimen: (a) illustration of the FE model constraints,

(b) detailed front view near the delamination tip, and (c) isometric view indicating the

locations where contact boundaries are applied; contact is implemented along both sides

of the specimen where it is confined within the clamping fixture.

To demonstrate mesh convergence of the FE model inner mesh, as well as domain indepen-

dence, a coarse, fine and finer mesh were used with the geometric parameters of specimen

MMELS-7-1.5 in Table 5.18 with a representative delamination length of a = 76.15 mm.

The in-plane dimensions of the elements in the vicinity of the delamination front are pre-

sented in Table 5.22. These were obtained in a similar manner to the DCB specimens

as presented in Figs. 5.10a, 5.10b and 5.10c, respectively. It may be noted that the

in-plane aspect ratio of the elements at the bottom of the lower ply in the coarse mesh

as in Fig. 5.10a is 4.52; for the fine and finer meshes as in Figs. 5.10b and 5.10c, the

in-plane aspect ratio of some of those elements is 2.26 and 4.52. In all meshes, there were

40 elements along the delamination front, each approximately 5.1 · 10−4 m thick. The

delamination front is assumed to be straight through the model width.

An arbitrary constant load of P FEA = 20 N was applied in all FE analyses for simplicity.

The stress intensity factors were calculated along the delamination front of each mesh

by means of the three-dimensional M-integral, which was described in Section 3.2. The

stress intensity factors obtained for the largest domain of each mesh as a function of the

normalized delamination front coordinate (x3/b) are shown in Fig. 5.33. Recall that the

dimensions of the complex in-plane stress intensity factor components are F×L−(3/2+iε),
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Table 5.22: Characteristics of the four meshes which were used in the convergence study
of the MMELS specimen.

mesh no. of no. of element in-plane size near in-plane no. of integration
elements nodes delamination front (m2) aspect ratio domains

coarse 197,680 838,486 1.03 · 10−4 × 1.03 · 10−4 1.0 2

fine 208,720 884,206 5.16 · 10−5 × 5.16 · 10−5 1.0 4

finer 221,520 937,220 2.58 · 10−5 × 2.58 · 10−5 1.0 5

modified fine 207,840 880,742 5.16 · 10−5 × 5.16 · 10−5 1.0 4
upper ply elements

5.16 · 10−5 × 5.73 · 10−5 1.11
lower ply elements

where F and L represent force and length, respectively; so that their units are MPa
√
m ·

m−iε. The oscillatory parameter, ε, depends upon the mechanical properties of both

materials on either side of the interface and for the investigated interface is presented in

Table 4.9 and given in eq. (2.46). Both in-plane stress intensity factors, K1 and K2 are

shown, respectively, in Figs. 5.33a and 5.33b. The dimensions of the out-of-plane stress

intensity factor, KIII , are F×L−3/2 with units of MPa
√
m; it is presented in Fig. 5.33c. It

may be observed that the in-plane stress intensity factors shown in Figs. 5.33a and 5.33b,

respectively, are symmetric with respect to specimen mid-thickness (x3/b = 0.5), whereas

the out-of-plane stress intensity factor shown in Fig. 5.33c is anti-symmetric. Differences

between the various results are discussed in the sequel.

(a) (c)(b)

✟✡

✞☛✂� ✞☛✂�

✞☛✂�

✟✁ ✟✄✄✄

Figure 5.33: Stress intensity factors calculated along the delamination front by means of

the three-dimensional M-integral for the largest domain of each FE mesh used to analyze

specimen MMELS-7-1.5 (coarse, fine and finer meshes). (a) K1 in MPa
√
m ·m−iε, (b) K2

in MPa
√
m ·m−iε and (c) KIII in MPa

√
m.
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Table 5.23: Maximum percent difference (in absolute value) between the stress intensity
factors calculated for the fifth integration domain (reference) and domains 2, 3 and 4 of
the finer mesh, as shown in Fig. 5.10c.

percent difference

domain 2 domain 3 domain 4

K1 K2 KIII K1 K2 KIII K1 K2 KIII

0.083 0.538 0.202 0.065 0.219 0.054 0.019 0.052 0.012

To demonstrate domain independence with the finer mesh similar to that shown in

Fig. 5.10c, the stress intensity factors obtained by means of the M-integral in domain

5, which is shown in Fig. 3.2e, served as reference values and were used for comparison.

In order to quantify the change in the calculated stress intensity factors obtained for each

domain, the percent difference defined in eq. (4.8) was used. In Table 5.23, the differences

between the stress intensity factors obtained for the fifth (reference) and other domains

of integration (see Fig. 3.2) are presented. It should be noted that the maximum percent

difference shown in Table 5.23 occurred at different positions along the delamination front.

The values obtained for the different integration domains demonstrate domain indepen-

dence. In a similar manner, demonstration of domain independence with the modified

fine mesh as shown in Figs. 5.32b and 5.10d, is presented in Table 5.24, in which the stress

intensity factors obtained by means of the M-integral in domain 4 (shown in Fig. 3.2d)

served as reference values and were used for comparison. Note, that the maximum per-

cent difference shown in Table 5.24 occurred at different positions along the delamination

front. The differences were less than 0.3% for domain 3.

In addition to Fig. 5.33, solution convergence is examined in Table 5.25, in which the

differences between the stress intensity factors obtained for pairs of meshes are presented.

For each pair of meshes, the mesh which is more refined in the vicinity of the delamination

front serves as the reference (ref) in eq. (4.8). It should be noted that the maximum per-

cent differences shown in Table 5.25 occurred at different positions along the delamination

front. It may be observed that convergence is obtained for both ranges of x3/b. Results for

Table 5.24: Maximum percent difference (in absolute value) between the stress intensity
factors calculated for the fourth integration domain (reference) and domains 2 and 3 of
the modified fine mesh, as shown in Fig. 5.10d.

percent difference

domain 2 domain 3

K1 K2 KIII K1 K2 KIII

0.112 0.618 0.349 0.065 0.209 0.117
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Table 5.25: Maximum percent difference (in absolute value) between the stress inten-
sity factors for pairs of meshes, along the delamination front, calculated for the largest
integration domain of each mesh.

percent difference

meshes coarse and fine fine and finer modified fine and finer

range K1 K2 KIII K1 K2 KIII K1 K2 KIII

0.0375 ≤ x3/b ≤ 0.9625 0.012 0.554 0.585 0.013 0.105 0.380 0.020 0.119 0.419

0.0125 ≤ x3/b ≤ 0.9875 0.115 1.124 7.600 0.055 0.362 3.051 0.073 0.440 3.395

x3/b = 0.0125 and 0.9875, that is for the domain in the outermost elements, deteriorate

as compared to the other domains. The error in KIII is somewhat higher than expected

as compared to the value obtained for the DCB specimen in Table 5.8. Recall that in the

development of the first term of the asymptotic stress and displacement fields, conditions

of plane deformation were assumed, as may be seen in Section 2.2. This assumption is

common in cases of through cracks/delaminations, so that the singularity related to the

free surface is not represented. Moreover, the assumption of plane deformation over con-

strains the free surface. Therefore, the values calculated by means of the M-integral and

the DE method at the FE model outer faces are inaccurate. Since the absolute value of

the maximum percent difference within the range of 0.0375 ≤ x3/b ≤ 0.9625 between the

fine and the finer mesh, and also between the modified fine and the finer mesh is less than

0.5%, it may be concluded that the modified fine mesh shown in Fig. 5.10d may be used

in all FE models in this study.

Based upon domain independence and the convergence study for the inner FE mesh of

the MMELS model and the outer FE mesh convergence study performed for the DCB

and C-ELS FE models in Sections 5.1.2 and 5.2.2, respectively, the modified fine mesh,

as shown in Figs. 5.32b and 5.10d, was employed for the MMELS specimens. Finite

element models were generated for delamination lengths, which were visually observed in

the images of each MMELS specimen, as acquired during the tests. The delamination

lengths, which were modeled, varied within the range 50.50 mm ≤ a ≤ 89.69 mm. Two

types of FE meshes were used for the analyses of the MMELS specimens: a mesh for

short delamination lengths where a < 80 mm, and a mesh for long delamination lengths

where a > 80 mm. These are referred to as the short delamination mesh and the long

delamination mesh, respectively.

The FE short delamination meshes contained 207,840 brick elements and 880,742 nodal

points, as shown in Table 5.22. A maximum in-plane element aspect ratio of 1 to 12.7 was

permitted away from the delamination front, at a distance of 61 ply thicknesses ahead and

behind the delamination front. In regions very far from expected stress concentrations,

such as load application points, reactions, delamination front, etc., an in-plane element
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aspect ratio no greater than 1 to 28.8 was permitted. The mesh in the neighborhood

of the delamination front was translated and the remainder of the mesh followed the

same principles as that used for the mesh for a = 76.15 mm. The FE long delamination

meshes contained 187,680 brick elements and 796,882 nodal points. A maximum in-plane

element aspect ratio of 1 to 12.7 and 1 to 13.4 was permitted away from the delamination

front, at a distance of 61 and 45 ply thicknesses behind and ahead the delamination front,

respectively. In regions very far from expected stress concentrations, an in-plane element

aspect ratio no greater than 1 to 35.5 was permitted. In a similar manner as with the

short mesh, here, the mesh in the vicinity of the delamination front was translated.

The stress intensity factors were calculated by means of the three-dimensionalM-integral,

described in Section 3.2, for each slice of elements within domain 4, one element thick

through the model thickness as shown in Fig. 3.2d. Ordinary units for the in-plane

stress intensity factors K̂1 and K̂2 were obtained by employing eq. (4.9) with the length

parameter L̂ = 100 µm, as described in Section 4.4.2. The normalized in-plane stress

intensity factors, K̂1 and K̂2, as well as the out-of-plane stress intensity factor, KIII , for

different delamination lengths, but for the same applied load P FEA = 20 N, as a function

of the normalized delamination front coordinate x3/b are shown in Figs. 5.34a to 5.34c,

respectively. It may be observed that the in-plane stress intensity factor components

are symmetric with respect to specimen mid-thickness x3/b = 0.5, whereas the out-of-

plane stress intensity factor is anti-symmetric. In addition, the values of K̂1 and K̂2

increase with a; the absolute value of KIII , also increases with a. It may be noted that

for each MMELS specimen another FE model was generated with a delamination length

a = 45 mm, as discussed in the sequel.

Based upon these results, the two phase angles, ψ̂ in eq. (1.12) and φ in eq. (1.14), were

also calculated. The in-plane phase angle ψ̂ and the out-of-plane phase angle φ, for

different delamination lengths but the same applied load P FEA = 20 N as a function of

the normalized delamination front coordinate x3/b are presented in Figs. 5.34d and 5.34e,

respectively. It may be observed that the values of ψ̂ in Fig. 5.34d increase with a; at

model mid-width, the values of ψ̂ vary between 0.633 rad and 0.642 rad for a = 50.50 mm

and a = 88.50 mm, respectively. For each value of a, ψ̂ is nearly constant with a less than

1% change within the range of 0.2125 < x3/b < 0.7875. Near the model outer surfaces, a

maximum percent difference of 10.2% is obtained between the values of ψ̂ at the mid-width

and x3/b = 0.0125 and 0.9875. The contributions of both K̂1 and K̂2 to the total interface

energy release rate Gi are important. In Fig. 5.34e, the values of φ are shown, where it

may be observed that φ is essentially the same value for each value of a. In addition,

it is seen that the values of φ are relatively small except near the specimen outer edges.

For each value of a, within the range of 0.1125 < x3/b < 0.8875, the absolute value of φ

is less than 0.05 rad, which is somewhat similar to the absolute value of φ for specimen
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Figure 5.34: Normalized in-plane stress intensity factors (a) K̂1 and (b) K̂2 (L̂ = 100 µm);

(c) out-of-plane stress intensity factor KIII ; and the two phase angles (d) ψ̂ and (e) φ as

a function of normalized delamination front coordinate x3/b for different delamination

lengths for specimen MMELS-7-1.5 with an applied load P FEA = 20 N.
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Figure 5.35: Three-dimensional surfaces of the normalized in-plane stress intensity factors

(a) K̂1 and (b) K̂2 (L̂ = 100 µm); and (c) out-of-plane stress intensity factor KIII as a

function of normalized delamination front coordinate x3/b and delamination length a.

The normalized in-plane stress intensity factors (d) K̂1 and (e) K̂2 (L̂ = 100 µm); and

(f) out-of-plane stress intensity factor KIII as a function of delamination length a for

different values of x3/b for specimen MMELS-7-1.5 with an applied load P FEA = 20 N.

DCB-7-1.1 presented in Fig. 5.13e. Near the model outer surfaces, the absolute value of

φ increases until an absolute value of 0.12 rad is reached. Hence, the contribution of KIII

to the total interface energy release rate Gi is less than that of K̂1 and K̂2. Nonetheless,

its contribution is included in the calculation of Gi.

The three-dimensional surface of each of the stress intensity factors, K̂1, K̂2 and KIII , as

a function of the delamination length a is plotted in Figs. 5.35a to 5.35c, respectively. In

Figs. 5.35d to 5.35f, the stress intensity factors, K̂1, K̂2 and KIII , are plotted as a function

of delamination length a for specific values of x3/b for an applied load P FEA = 20 N.

Although the FEAs were non-linear, it may be observed that for each value of x3/b along

the delamination front, a linear relationship was found between each of the stress intensity

factors and the delamination length a. This behavior was observed in every analysis that
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Figure 5.36: Normalized in-plane stress intensity factors (a) K̂1 and (b) K̂2 (L̂ = 100 µm);

(c) out-of-plane stress intensity factor KIII as a function of normalized delamination front

coordinate x3/b for specimen MMELS-7-1.5 with a delamination length a = 76.15 mm

and different applied loads P FEA = 20 N and P FEA = 100 N. The relationship between

the applied load P FEA and (d) K̂1, (e) K̂2 (L̂ = 100 µm), and (f) KIII for different values

of x3/b for a delamination length a = 76.15 mm.

was performed for each MMELS FE model. Thus, for each MMELS specimen in this

particular case, two FEAs at a = 45 mm and 90 mm would have been sufficient for

determining the value of the stress intensity factors, K̂1, K̂2 and KIII , by means of linear

interpolation. But it is retrospective wisdom.

Although the FEAs for specimen MMELS-7-1.5 were non-linear, as a result of the con-

tact surfaces and large displacements, a linear relationship was found between the load

applied in the FEA and the corresponding stress intensity factors, as may be observed

in Figs. 5.36a through 5.36c and in Figs. 5.36d through 5.36f. For the stress intensity

factors in Figs. 5.36a to 5.36c, which are plotted with respect to the normalized delam-

ination front coordinate x3/b, the results for P FEA = 100 N are 5.00 times greater than

those for P FEA = 20 N. Note that the two FEAs are for specimen MMELS-7-1.5 with a

delamination length a = 76.15 mm; they only differ in the load applied on the FE model.

For each stress intensity factor, it was found that the ratio between the values calculated
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Figure 5.37: The two phase angles (a) ψ̂ and (b) φ; and (c) the interface energy release rate

GFEA
iψ̂

as a function of normalized delamination front coordinate x3/b for a delamination

length a = 76.15 mm and different applied loads P FEA = 20 N and P FEA = 100 N.

from these two FEAs is the same as that exists for the applied loads, meaning a ratio of

5.00. The plots of P FEA versus each stress intensity factor K̂1, K̂2 and KIII , are presented

for different values of x3/b in Figs. 5.36d to 5.36f, respectively. In each of these plots,

it may be observed that the stress intensity factor calculated for P FEA = 100 N is 5.00

times greater than that for P FEA = 20 N. The values of the stress intensity factors, K̂1

and K̂2, are quite similar for x3/b = 0.2125 and 0.5125, as may be observed in Figs. 5.36a

and 5.36b. It may be noted that for KIII and x3/b = 0.5125 in Fig. 5.36f, the values are

along the ordinate, that is KIII ≈ 0.

In Figs. 5.37a and 5.37b, the phase angles ψ̂ and φ are plotted as a function of x3/b for

a = 76.15 mm and two values of P FEA. It may be observed that the relationship between

the in-plane normalized stress intensity factors, represented by ψ̂ in eq. (1.12), remained

unchanged, as well as the relationship between the out-of-plane to in-plane stress intensity

factors, which is represented by φ in eq. (1.14). The energy release rate GFEA
iψ̂

along the

delamination front is presented in Fig. 5.37c. It may be seen that an increase of 500% of

the initial value the applied load results in an increase of 2500% from the initial value of

the interface energy release rate, as indicated in eq. (5.6)2.

The existence of a linear relationship between the stress intensity factors and the FE

applied load was further exploited for simplicity in all MMELS FE models. Since eq. (5.6)

was found to be applicable for analyzing the MMELS specimens by means of the FE

method, in each MMELS FE model, for each delamination length a, a normalized load

P FEA = 20 N was applied in the FE model. The actual results were obtained by using

eqs. (5.6).
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Figure 5.38: (a) The interface energy release rate GFEA
iψ̂

as a function of the normal-

ized delamination front coordinate x3/b for different delamination lengths for specimen

MMELS-7-1.5 with an applied load P FEA = 20 N. (b) The averaged interface energy

release rate GFEAi as a function of delamination length for specimen MMELS-7-1.5 with

an applied load P FEA = 20 N.

The interface energy release rate GFEA
iψ̂

, for different delamination lengths but the same

applied load P FEA = 20 N as a function of the normalized delamination front coordinate

x3/b, is presented in Fig. 5.38a. The i in the subscript of GFEA
iψ̂

represents interface; ψ̂

denotes the dependence of this value upon the in-plane phase angle, which varies along

the delamination front. It may be observed that for a constant value of the applied load,

the interface energy release rate increases with a. When using methods presented in

Blackman et al. (2001) to calculate the energy release rate for UD laminates, a global

value is obtained. Thus here, an average through the width is found as

Gi(a) =
∫ 1

0

Giψ̂(x3/b, a)d(x3/b). (5.16)

It may be noted that the GFEA
iψ̂

(x3/b, a) curves used in calculating the average interface

energy release rate GFEAi (a) were those obtained via the stress intensity factors using

eq. (1.17) which were extracted by means of the M-integral.

A second order polynomial curve fit given by

Gi(a) = C1a
2 + C2a+ C3 (5.17)

was employed in order to characterize the relationship between the calculated GFEAi from

eq. (5.16) and the corresponding delamination length a. For specimen MMELS-7-1.5, the
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Table 5.26: Values of the fitting parameters in eq. (5.17) for the MMELS specimens.

specimen no. C1 (N/m3) C2 (N/m2) C3 (N/m) R2

MMELS-7-1.5 8.07 · 103 4.38 · 101 1.83 · 10−1 1.0

MMELS-7-1.7 8.32 · 103 4.34 · 101 1.67 · 10−1 1.0

MMELS-7-1.9 8.29 · 103 4.72 · 101 1.26 · 10−1 1.0

MMELS-7-1.17 8.62 · 103 4.43 · 101 2.05 · 10−1 1.0

MMELS-7-1.18 8.63 · 103 4.56 · 101 1.72 · 10−1 1.0

values of the fitting parameters are given in Table 5.26. In Fig. 5.38b, the GFEAi (a) fitting

curve obtained for specimen MMELS-7-1.5 is presented along with the values of GFEAi

in eq. (5.16) calculated for different delamination lengths a. It may be observed that

excellent agreement exists between the fitted curve and calculated values. The additional

FEA result, with a delamination length a = 45 mm, was needed for better fitting of the

Gi(a) function. The same procedure was performed separately with the experimental data

of specimens MMELS-7-1.7, MMELS-7-1.9, MMELS-7-1.17 and MMELS-7-1.18 and their

FEA results; the values of the fitting parameters in eq. (5.17) are also shown for these

specimens in Table 5.26. It may be noted that in all MMELS specimens the values of the

in-plane phase angle ψ̂, given in eq. (1.12), were found to vary within a relatively narrow

range of 0.20π < ψ̂ < 0.23π.

In Tables G.13 through G.17 in Appendix G, the calculated values of the fracture tough-

ness resistance GiR, as a function of the delamination length a, are presented for both ex-

perimentally detected and evaluated delamination lengths of the corresponding MMELS

specimen. It may be recalled that in order to obtain these values curve fitting in eq. (5.17)

and load adjustment of the FEA applied load to the experimentally obtained failure load

in eq. (5.6) were performed, so that an average through the thickness fracture resistance

value, based on the actual load in the experiment, is obtained.

5.3.3 Results

Based upon the data in Tables G.13 through G.17, a GiR-curve was generated. The GiR
versus ∆a = a− a0 data points are plotted in Fig. 5.39 An initiation fracture toughness

is shown for ∆a = 0 as Gic = 393.3 N/m, which is the critical interface energy release rate

value for delamination growth from the PTFE insert obtained for specimens MMELS-7-

1.5, MMELS-7-1.7, MMELS-7-1.9, MMELS-7-1.17 and MMELS-7-1.18. It may be seen

that the values of the fracture toughness resistance GiR increase with ∆a until a steady

state value of Giss = 836.3 N/m is reached for ∆a = 14 mm. Fitting the points between
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Figure 5.39: Fracture resistance curve: the critical interface energy release rate GiR as a

function of delamination propagation length ∆a = a− a0.

0 ≤ ∆a ≤ 14 mm results in the power law given by

GiR = 186.2 · (∆a)0.33 + 393.3 (5.18)

where ∆a in eq. (5.18) is measured in millimeters. The coefficient of determination R2

of the power law in eq. (5.18) and the plotted points where 0 ≤ ∆a ≤ 14 mm was found

as 0.88. Also, it may be observed that for 14 mm ≤ ∆a ≤ 40 mm, most of the GiR data

points are within one standard deviation from the Giss line; the value of one STD was

found to be 54.8 N/m.

It may be noted that the obtained value of Gic = 393.3 N/m is close to the critical value

for fracture initiation for an in-plane phase angle ψ̂ which approaches π/5 obtained by

means of the BD tests in Section 4.5. This value was found as Gic = 407.6 N/m as may

be observed from the failure curve presented in Fig. 4.18.

Moreover, for beam-type specimens, the value of Gic for mixed-mode in-plane deformation

is close to that obtained for mode I. Here, an initiation fracture toughness value of Gic =
393.3 N/m was obtained for ψ̂ ≈ π/5, whereas in Section 5.1.3, a value of GIc = 376.3 N/m

for nearly mode I deformation was determined. The behavior of R-curves for thermoset

and thermoplastic UD laminate specimens was presented in Albertsen et al. (1995). In

that work, the fracture toughness for different deformation modes was examined, as well

as the influence of the fiber surface treatment upon the fracture toughness values at
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initiation and propagation. The mode mixity in Albertsen et al. (1995) was expressed in

terms of the GI/GII ratio. In order to compare between the obtained results with respect

to the mixed-mode ratio expressed by ψ̂, use of eq. (1.12) with ǫ = 0 was made. Since the

delamination in Albertsen et al. (1995) is located between two adjacent UD plies of the

same orientation, the value of L̂ in eq. (1.12) is not required. For the thermoset beam-type

specimens made from UD carbon/epoxy (C/HG9106) with commercially treated fibers,

the value for delamination initiation obtained for the DCB tests was GIc = 400 N/m. The

delamination initiation value obtained for the mixed-mode flexure (MMF) tests, shown

in Fig. 1.9a in which ψ̂ ≃ 0.23π, was GI/IIc = 410 N/m. This result of Albertsen et al.

(1995), where GIc and GI/IIc are close to each other for a relatively small mixed mode ratio,

supports the results obtained in the current investigation for GIc and Gic.



Chapter 6

Discussion and Conclusions

This investigation focused on the mixed mode I/II fracture behavior at initiation, as well

as for propagation under quasi-static loading, of a carbon/epoxy MD woven composite

containing an interlaminar delamination between two plain woven plies. The tows in

the upper ply are in the 0◦/90◦-directions, and for the lower ply, the tows are in the

+45◦/−45◦-directions. The investigation involved analytical, numerical and experimental

work. It may be noted that the methodology developed here is transferable to other MD

laminate composites, but it requires adaptations and much analytical, numerical and

experimental work.

In Chapter 1, a literature review was presented. A brief introduction to the field of

polymer-fiber composites was given in Section 1.1, where some of the difficulties raised

by the composite structure manufacturing process were described. The stress and dis-

placement fields near the tip of an interface crack, which is located between two linear

elastic isotopic materials, were described in Section 1.2. A literature review regarding

pure deformation modes, as well as in-plane mixed mode fracture toughness measurement

methods was presented in Section 1.3, where examples of various bimaterial interface de-

laminations within an MD composite laminate were also described. Many test techniques

and specimens, which were used during the last fifteen years, were examined. Only a few

test methods were approved to serve as standards. Furthermore, although the composite

structure architecture, its constituents and applied in-service loads are complicated in

most cases, the standards are limited to UD carbon or glass FRP specimens, which are

subjected to quasi-static loading conditions. Among these standards are the three mode

I test standards, ASTM Standard D 5528-13 (2014), ISO 15024 (2011) and JIS K 7086

published in 1993 (Hojo et al., 1995) employing the DCB specimen. The three mode II

test standards include the ISO 15114 (2014) standard employing the C-ELS test configu-

ration; and the two standards in which the three-point bending ENF test configuration is

employed; these are the ASTM standard D 7905 (2014) and the JIS K 7086 established in

166
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March 1993 (Tanaka et al., 1995). There is currently one international standard for the

mixed mode I/II test method which is the ASTM standard D 6671-13 (2014), in which

the MMB test configuration is employed.

In Chapter 2, the first term of the asymptotic expansion for the stress and displacement

fields in the neighborhood of the delamination front, for the interface studied here, was

presented. Use was made of the formalisms of Lekhnitskii (1950) and Stroh (1958),

in which plane deformations are assumed. The expressions for the in-plane stress and

displacement components were obtained; those were related to the complex in-plane stress

intensity factor K = K1 + iK2, which is the amplitude of the oscillatory, square-root

singular stress components. The expressions for the out-of-plane stress and displacement

components were also obtained; those were related to the real out-of-plane stress intensity

factor KIII , which is the amplitude of the square-root singular stress component. It may

be pointed out that the mechanical and thermal properties of the 0◦/90◦ woven ply were

obtained by Ishbir (2014) via the High Fidelity Generalized Method of Cells (HFGMC),

described in detail in Aboudi (2004). In addition, the residual stresses were found to be

minimal since both plies, 0◦/90◦ and +45◦/ − 45◦, have the same coefficients of thermal

expansion. Hence, the stress intensity factors result only from mechanical loading.

Next, methods for extraction and calculation of the stress intensity factors were presented

in Chapter 3. The DE method, which is considered a straightforward method, was pre-

sented in Section 3.1. It is based upon the relative displacement of the crack faces or the

”jump” in the crack face displacements within the neighborhood of the delamination front.

Thus, the first term of the asymptotic expansion for the displacement field was employed.

Use is made of the expressions in eqs. (3.7) and (3.8). An interaction energy orM-integral

for mechanical loading was extended for the investigated interface and was presented in

Section 3.2. The M-integral is based on conservative integrals and therefore it is a more

complicated but accurate method. A solution being sought, in which the stress and dis-

placement fields may be obtained via the FEM, along with a known auxiliary solution,

in which the first term of the asymptotic expansion for the displacement field was em-

ployed, resulted in separate expressions for the stress intensity factors given in eqs. (3.17)

to (3.19). Three benchmark problems were solved by performing numerical analyses in

Section 3.3, while using the known asymptotic solutions in eqs. (2.64) and (2.65) with

the stress intensity factors in Table 3.1. These were employed to obtain the displacement

vector of each nodal point located on the outer surfaces of each benchmark FE model,

which served as boundary conditions in the FEA. The FEA result (displacement field

throughout the FE model) together with the M-integral were employed for calculating

the stress intensity factors. These were also calculated by means of the FEA and the

DE method. Comparison of the calculated and exact values of the stress intensity factors

(analytic solution) was quantified for both methods and excellent agreement was found,
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so that the software written for the M-integral and the DE method, as well as the first

term of the asymptotic displacement field, were verified and both methods were validated.

Mixed-mode fracture toughness tests were carried out on the MD laminate studied here

making use of a BD specimen. Tests at various loading angles were performed in order

to obtain a wide range of mode mixities, as presented in Chapter 4. The test procedure

was based upon the protocol described in Section 4.1, in which specimen dimensions were

measured in the spirit of the ASTM E 399-12ε1 (2013) standard. The materials and

methods were presented in Section 4.2, in which the manufacturing process and stacking

sequence of the 69 carbon/epoxy (G0814/913) prepreg plain woven plies were described.

The specimens were analyzed by means of the FEM and the M-integral to obtaine the

stress intensity factors; these were used to determine the critical interface energy release

rate and two phase angles (mode mixities). The obtained results were discussed in Sec-

tion 4.3, in which verification of FE mesh convergence and domain independence was

also included. Finally, a two and three-dimensional failure criterion were presented in

Section 4.5. A statistical analysis with a 10% probability of unexpected failure and a

95% confidence was carried out for each criterion, in order to account for scatter in the

results. The statistical curve and surface, which were presented in Section 4.5, predicted,

as expected, that all specimens fail. The statistical curve and surface obtained may be

used for safer design purposes for the investigated interface.

Fracture toughness tests for delamination initiation and propagation under quasi-static

loading were carried out making use of three beam-type specimens: DCB, C-ELS and

MMELS. Results were presented in Chapter 5. A carbon/epoxy (G0814/913) prepreg

plain woven plate containing 23 plies was fabricated. Specimens were cut from the plate by

means of a water-jet machine. The specimens were used to measure the fracture toughness

Gic of the investigated interface, as well as the R-curve behavior. The deformation modes

considered were nearly mode I, nearly mode II and one in-plane mixed mode ratio. The

DCB specimen was presented in Section 5.1. Three fracture toughness tests were carried

out based upon the protocol described in Section 5.1.1. The DCB specimens were analyzed

by means of the FEM and the M-integral to determine the stress intensity factors, as

described in Section 5.1.2. A fracture toughness resistance GIR-curve was generated, as

presented in Section 5.1.3, and the critical values of the interface energy release rate

for initiation GIc = 376.3 N/m and steady-state propagation GIss = 715.5 N/m were

determined.

The C-ELS specimen was presented in Section 5.2. Five fracture toughness tests, as well

as ELS clamping fixture calibration procedure were carried out based upon the protocol

described in Section 5.2.1. The C-ELS specimens were analyzed by means of the FEM

and the DE method to determine the in-plane stress intensity factors, as described in

Section 5.2.2. A fracture toughness resistance GIIR-curve was generated, as presented in
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Section 5.2.3, and the critical values of the interface energy release rate for initiation

GIIc = 889.1 N/m and steady-state propagation GIIss = 2352.6 N/m were determined.

The MMELS specimen was presented in Section 5.3. Five fracture toughness test were

carried out based upon the protocol described in Section 5.3.1. The MMELS specimens

were analyzed by means of the FEM and the three-dimensional M-integral to determine

the stress intensity factors. These were further used, along with the analyzed experimental

data, to determine the critical interface energy release rate and two phase angles (mode

mixities), as described in Section 5.3.2. Finally, a fracture toughness resistance GiR-curve
was generated, as presented in Section 5.3.3, and the critical values of the interface energy

release rate for initiation Gic = 393.3 N/m and steady-state propagation Giss = 836.3 N/m

were determined for the MMELS specimen.

Two approaches, global and local, may be found in the literature for calculating the critical

energy release rate. The global approach, as advocated by the standards, is appropriate

for calculating the fracture toughness with respect to the entire region mechanically af-

fected by the delamination. The local approach is more complicated. The interface energy

release rate is calculated along the delamination front. The delamination considered here

is along an interface between two plain woven plies of different orientations in an MD

laminate, where the specimen arms or sub-laminates are of different thicknesses and dif-

ferent effective mechanical properties, such as axial and flexural moduli. Therefore, some

of the methods presented in the standards, which rely upon beam theory where identical

flexural moduli in all specimen laminate segments (upper sublaminate, lower sublaminate

and intact laminate) occur, are not applicable for determining the critical interface energy

release rate Gic. Also, for the BD specimens tested here, no appropriate global expression

for determining Gic is available. Hence, the local approach was implemented.

It may be noted that the stress intensity factor KIII was much smaller than K̂1 and

K̂2, except at the specimen edges. This appears to be the result of a Poisson effect.

Nonetheless, in calculating the total interface energy release rate Gi, it was taken into

consideration for all the three-dimensional analyses carried out.

Quantification of the critical energy release rate Gic values obtained for delamination ini-

tiation in all test specimens as a function of the in-plane phase angle ψ̂ are presented in

Fig. 6.1. The data shown in Fig. 6.1 is a major result of this comprehensive investiga-

tion. This plot was originally generated for the BD fracture toughness tests discussed

in Section 4.5 and shown in Fig. 4.18. The fracture toughness values for delamination

initiation obtained by means of the beam-type specimens, DCB, MMELS and C-ELS,

are also plotted in Fig. 6.1, where it is clear that for the DCB specimens with ψ̂ ≈ 0, a

higher value of Gic was obtained as compared to the BD specimens. However, the value

for GIc was found to be less than that obtained in Simon et al. (2017), in which the same
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Figure 6.1: The in-plane energy release rate Gi−2D(ψ̂) for L̂ = 100 µm, given in eq. (4.15)

with φ = 0 for the BD test specimen. The beam-type specimen Gic values for initiation

and their obtained B-K failure curve (plotted in brown), given in eq. (6.1) with m = 3.22

.

interface was investigated, but thinner specimens with a different stacking sequence, was

employed. In some previous works, such as in that of Hojo and Aoki (1993), where DCB

specimens composed of UD AS4/PEEK laminates and of UD T800/3631 laminates with

nominal thicknesses of 2h = 3, 4, 5 and 8 mm were tested, it was observed that there was

no thickness effect upon the value of the fracture toughness at initiation. It should be

noted that in order to attain those thicknesses, the DCB specimens were milled from a

thickness of 8 mm to their final thickness. Milling down the specimen may have affected

the initiation energy release rate values that obtained.

The behavior in which DCB specimens of greater thickness have lower fracture toughness

initiation values was also observed in other recent studies, in which thermoset UD lami-

nate specimens were investigated, such as in Kravchenko et al. (2017) and Kumar et al.

(2018). Another example is the MD carbon/epoxy composite studied in Mega and Banks-

Sills (2019) in comparison to Chocron and Banks-Sills (2019), as discussed at the end of

Section 5.1.3. In order to emphasize the effect of specimen nominal thickness upon the
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Table 6.1: Values of GIc as a function of specimen thickness, 2h, as obtained for a UD
CFRP from Kumar et al. (2018) and from Kravchenko et al. (2017), for a delamination
along a 0◦ UD fabric and +45◦/ − 45◦ (weave) interface from Chocron and Banks-Sills
(2019) and Mega and Banks-Sills (2019), as well as for a delamination along a 0◦/90◦

and +45◦/− 45◦ (weaves) interface from Simon et al. (2017) and as investigated here in
Chapters 4 and 5.

2h (mm) GIc (N/m)

4.0 170

Kumar et al. (2018) 5.3 144

6.7 102
2.0 277

4.1 233

Kravchenko et al. (2017) 6.1 184

8.2 192

15.6∗ 110
Chocron and Banks-Sills (2019) 5.0 358

Mega and Banks-Sills (2019) 16.6 114
Simon et al. (2017) 3.7 508

Chapter 5 5.0 376

Chapter 4 15.6 210
∗The extrapolated value obtained by considering the initiation values of specimens for
which K-dominance was verified in Kravchenko et al. (2017) (with nominal thickness
of 4.1, 6.1 and 8.2 mm).

initiation energy release rate value, a summary is presented in Table 6.1, and also plotted

in Fig. 6.2. Since linear elastic behavior of the specimen is recommended in the ASTM

Standard D 5528-13 (2014) and ISO Standard 15024 (2011), the value of GIc for the spec-
imen 2.0 mm thick, given in Fig. 6.2 and in Table 6.1, was excluded from the calculation

of the extrapolated value of GIc for a thickness of 15.6 mm. The extrapolated value of

110 N/m is marked with an x in Fig. 6.2. In Fig. 6.2, it is clearly observed that there is

a relationship between specimen nominal thickness and the initiation energy release rate

value, where higher GIc values are obtained for thinner specimens. The differences in the

initiation toughness values obtained for nearly mode I deformation may be explained by

the different levels of constraint in the two specimens. In Kravchenko et al. (2017), it

was shown that the size of the K-dominant zone is the same order of magnitude as the

fracture process zone reported in the literature for brittle thermosets and thermoplastics.

Thus, for thin DCB specimens, higher initiation energy release rate values are expected.

Referring to Fig. 6.1, it is observed that there is relatively good agreement between the

critical values for delamination onset obtained with both specimen types, the BD and

the beam-type specimens, when ψ̂ > 0.20π. Thus, despite the scatter, it appears that

increasing the mode II deformation results in values of the critical energy release rate for
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Figure 6.2: Values of GIc plotted as a function of specimen thickness, 2h, for different ma-

terial systems as obtained for a UD CFRP from Kumar et al. (2018) and from Kravchenko

et al. (2017), for a delamination along a 0◦ and +45◦/− 45◦ interface from Chocron and

Banks-Sills (2019) and Mega and Banks-Sills (2019), as well as for a delamination along

a 0◦/90◦ and +45◦/ − 45◦ interface from Simon et al. (2017) and as investigated here in

Chapters 4 and 5.

initiation Gic which are less sensitive to specimen thickness. This is in contrast to the

nearly mode I deformation, where GIc was found to be affected by the specimen thickness.

Another failure criterion is used with beam-type specimens. As proposed by Benzeggagh

and Kenane (1996), an empirical failure criterion given as

GTc = GIc + (GIIc − GIc)
(GII
GT

)m
(6.1)

where

GT = GI + GII (6.2)

may be used for characterizing the relationship between the critical values of the energy

release rate experimentally obtained and the corresponding mode mixity. The latter may

also be expressed in terms of the mode mixity ratio GII/GT , where the total energy release

rate is given in eq. (6.2). In eq. (6.1), c in the subscripts denotes the critical value for

the energy release rate obtained for different mode mixities. Employing the criterion in

eq. (6.1) with the beam-type specimen test results shown in Fig. 6.1, leads to m = 3.22.

It is assumed here that

tan2ψ̂ = GII/GI (6.3)

which is an extension of the definition of ψ̂ in eq. (1.12). The B-K failure curve is also

plotted in Fig. 6.1 as a function of ψ̂. It may be observed that the B-K curve is conservative
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Figure 6.3: Schematic illustration of damage observed on the outer side of a dog-bone

specimen made of woven fabric composites loaded in tension as presented in Alif and

Carlsson (1997).

for the region where 0.23π < ψ̂ < 0.35π, while it is not conservative for the region where

ψ̂ < 0.16π. Thus, for thick structural composites, the fracture initiation values for mode I

deformation should be determined by means of thick specimen test methods. Otherwise,

”optimistic” values may result in improper design, which may end in catastrophic events.

For the investigated interface, a plateau region of the GIR-curve was obtained, in which

almost the same delamination propagation resistance value was determined here and

in Simon et al. (2017). Here, GIss = 715.5 N/m, whereas in Simon et al. (2017),

GIss = 710.9 N/m. Thus, it appears that in the steady state region the delamination

propagation mode I energy release rate GIR values are relatively insensitive to the thickness

of the DCB specimens. This was supported by the behavior of R-curves for thermoset

UD laminate specimens as discussed in Suo et al. (1992).

Although here the specimens are made of plain woven plies, it is interesting to explore

some of the failure mechanisms in woven composites. In Alif and Carlsson (1997), failure

mechanisms of a carbon/epoxy 5-harness weave and a glass/epoxy 4-harness weave were

investigated. A schematic illustration of damage observed on the outer side of a dog-

bone tensile test specimen made of the woven fabric composites is shown in Fig. 6.3, as

presented in Alif and Carlsson (1997). It is interesting to note that in the tensile tests of

the carbon/epoxy weave specimens in Alif and Carlsson (1997), the sequence of damage

evolution was found as: initial cracking of the pure matrix regions, transverse yarn (fill)

bundle cracking, fill/weft debonding and longitudinal splits of the fill bundles close to

ultimate failure. However, in the glass/epoxy weave specimens, the sequence of damage

formation was found as: initial cracking of the pure matrix regions, fill/weft debonding

and longitudinal splits of the fill bundles close to ultimate failure, without transverse yarn
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bundle cracking. The absence of transverse yarn bundle cracking may be attributed to

the improved constraint of fill tows by weft tows within the 4-harness weave pattern. In

addition, it may be pointed out that the compression and shear strengths of the weaves

examined in Alif and Carlsson (1997) were found to be lower than their tensile strength.

For the 0◦/90◦ plain woven ply used here, the shear strength is less than 20% of the

strength in tension and compression, which may also support the difference between the

results obtained for the DCB and BD specimens with a low loading angle.

As presented in the literature regarding fracture toughness of composites, for UD DCB

specimens, phenomena such as fiber bridging and matrix cracking tend to occur. For

woven fabric composites, phenomena such as matrix cracking, bifurcation of the delam-

ination front and other failure mechanisms as shown in Fig. 6.3, are typically observed.

All of these phenomena result in a rising R-curve. However, some of them, such as fiber

bridging in UD DCB specimens, do not occur in structural composites (Davies et al.,

1998). Moreover, in the case of woven fabric composites, the increase in fracture resis-

tance is attributed to mechanisms other than those which occur in UD DCB specimens.

For woven composites, as observed in Hojo et al. (1995) and in Alif et al. (1997), a

”stick-slip” behavior of the mode I delamination propagation was obtained. Following

the ”stick-slip” characteristic, the delamination temporarily arrests by a transverse fiber

bundle, which serves as an obstacle or barrier oriented in the 90◦-direction. With further

load application, a small delamination is formed ahead of the transverse (fill/warp) tow

together with further backward delamination propagation around the fill yarn, sometimes

with additional longitudinal separation of the fill yarn fiber bundle on the outer sides

of the DCB specimen, as schematically shown in Fig. 6.3. This behavior of crack ar-

rest, debonding of fill yarns and longitudinal splitting was also observed in other works

that may be found in the literature, such as Alif et al. (1998), Ogasawara et al.(2012),

Banks-Sills et al. (2013) and Fanteria et al. (2017).

Regarding the current investigated interface, scanning electron microscopy (SEM) analy-

ses were performed in Banks-Sills et al. (2013), in which the same interface was studied,

with different DCB specimen thickness and stacking sequence, as discussed in Section 5.1.

Based upon the SEM analyses in Banks-Sills et al. (2013), it was found that the delam-

ination propagated along the 0◦/90◦//+45◦/ − 45◦ interface. As also occurred in the

current study, partial delamination of yarn at the outer sides (front and back) of the

DCB specimen was observed during the tests. It may be noted that the initial increase in

mode I fracture toughness was attributed in Alif et al. (1998) to the damage progression

associated with the twisting delamination path through the woven fabric microstructure.

In that work, the effect of weave pattern on the interlaminar fracture toughness for mode

I deformation was investigated in plain, twill and satin weave DCB specimens. According
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to Alif et al. (1998), the delamination resistance was increased as the complexity of the

weave increases.

It may be pointed out that a ”stick-slip” delamination propagation was observed in the

MMELS specimen tests, in which the mode I deformation was found to be dominant.

This behavior was also observed in Alif et al. (1997), in which the mode I, mode II and

mixed mode fracture of a carbon/epoxy 5-harness weave was investigated by means of

the DCB, ENF and MMB specimens. It was observed in Alif et al. (1997), that in mixed

mode deformation in which mode I was dominant, the behavior of crack propagation was

similar to the ”stick-slip” characteristic of mode I. For the C-ELS specimens tested here

with nearly mode II deformation, the delamination propagation was found to be more

stable than that obtained for the DCB and MMELS specimens.

Quantification of the critical energy release rate Gic values obtained for delamination ini-

tiation in all test specimens and the steady-state interface energy release rate Giss values
obtained for the beam-type test specimens as a function of the in-plane phase angle ψ̂

are presented in Fig. 6.4. This plot is the same as that given in Fig. 6.1, except that it

includes the Giss values. It is observed that for each value of ψ̂, a higher value of Giss was
obtained as compared to the initiation value Gic. Use of the B-K criterion given in eq. (6.1)

was made for characterizing the relationship between the steady-state propagation values

of the energy release rate experimentally obtained and the corresponding mode mixity.

The latter is expressed in terms of the mode mixity ratio GII/GT , where the total energy

release rate is given in eq. (6.2). Again, it is assumed here that ψ̂ is expressed by means

of eq. (6.3). In eq. (6.1), the subscript c is replaced by ss so that the steady-state prop-

agation values for the energy release rate obtained for different mode mixities are used.

Note that GIss = 715.5 N/m, GIIss = 2352.6 N/m and Giss = 836.3 N/m. Employing the

criterion in eq. (6.1) with the beam-type specimen test results for steady-state delamina-

tion growth shown in Fig. 6.4, leads to m = 2.60, which is less than the value obtained for

delamination initiation. Nevertheless, the behavior of both B-K failure curves, at delami-

nation initiation and delamination steady-state propagation, is relatively similar. It may

be noted that the steady-state delamination growth values are approximately twice as

high as the delamination initiation values, varying from Giss/Gic = 1.9 for the DCB spec-

imens, through Giss/Gic = 2.1 for the MMELS specimens, to Giss/Gic = 2.6 for the C-ELS

specimens. In all beam-type specimens, an increase in the fracture toughness resistance

was observed as delamination propagated until a steady-state value was reached. That

increase is attributed to the ”stick-slip” behavior, as discussed above. It is observed on the

specimen edges that the tows are separating in the process of delamination propagation,

both ahead and behind the delamination front, which was affected by the woven fabric

microstructure. Fill tows, which are close to delamination surface, are separating and

contributing more energy as the delamination grows. Micro-computerized tomography on
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Figure 6.4: The in-plane energy release rate Gi−2D(ψ̂) for L̂ = 100 µm, given in eq. (4.15)

with φ = 0 for the BD test specimen. The beam-type specimen Gic values for initiation

(ini.) and their obtained B-K failure curve (plotted in brown), given in eq. (6.1) with

m = 3.22. The beam-type specimen Giss values for steady-state propagation (ss prop.)

and their obtained B-K failure curve (plotted in brown dots), given in eq. (6.1) with

m = 2.60.

another set of specimens, composed of a twill weave, showed tow separation to occur also

within the specimen.

It is worth mentioning that despite the fact that the FEAs for the C-ELS and MMELS

specimens were non-linear, as a result of the contact surfaces and large displacements,

a linear relationship was found between the delamination length in the second stage of

the C-ELS test and the corresponding in-plane phase angle ψ̂. Demonstration of the

linear relationship between the normalized in-plane stress intensity factor K̂2 and the

delamination length was also presented in Section 5.2.2. Regarding the MMELS FEAs,

a linear relationship between the delamination length and each of the stress intensity

factors at the same location along the delamination front (same value of the normalized

delamination front coordinate x3/b) was found, as presented in Section 5.3.2.
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As future work, this thesis may be extended in several directions. A new look at the

large amount of data obtained for the three beam-type specimens tested here would be

the first step. Data analysis in a manner similar to that employed with the data obtained

for the BD test specimens is recommended. It is suggested to examine and analyse

both the fracture onset data, as well as the steady state delamination propagation data,

so that two criteria may be determined by means of the beam-type specimens. The

criterion for delamination initiation will serve as a lower bound, as performed with the data

obtained for the BD specimens, whereas the the criterion for a steady state delamination

propagation will serve as an upper bound. SEM analyses of the BD and the beam-type

specimens may also be performed. Since there was only one ratio of mode mixity that was

examined here with the beam-type specimens, it is suggested, as a second direction, to

carry out additional beam-type fracture toughness tests with specimens of mode mixity

of ψ̂ ≈ 0.12π, 0.28π and 0.35π, in which the beam-type specimen arms are of different

thicknesses than those of the MMELS specimen examined here. In this way a complete

beam-type failure curve may be determined for delamination initiation and propagation.

Indeed, a statistical analysis should be applied to all analyzed data. It is also suggested

to examine the effect of porosity upon the investigated interface fracture toughness for

several mode mixities. As observed in Section 4.5, for specimen sp1.2 which was found to

have pores in it, the obtained critical energy release rate was found to be lower than that

obtained for specimens without voids, as may be also seen in Fig. 6.1. That region was

considered to be safe from delamination initiation, but the fracture toughness calculated

for specimen sp1.2 was more than 4 STDs away from the failure curve determined for valid

BD specimens. Finally, measurement of the interlaminar fatigue delamination growth

rate by means of the beam-type specimens with the same interface as examined here at

different mode mixities may be carried out. In this way, generation of a master curve

for delamination growth rate versus normalized energy release rate, may be obtained for

various mode mixities.
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Appendix A

Lekhnitskii Formalism

In this appendix a brief summary of the Lekhnitskii (1950) formalism is given based on the

presentation of Ting (1996). Lekhnitskii (1950) developed the expressions for the stress

and displacement fields within an anisotropic elastic material, under the assumption that

the three-dimensional stress field depends solely on the two in-plane coordinates, say x1

and x2, of the media, meaning

σij = σij(x1, x2). (A-1)

Hence, the equilibrium equations may be written in a reduced form as

σi1,1 + σi2,2 = 0, (A-2)

where i = 1, 2, 3. eq. (A-1) allows description of the stress components by means of two

Airy potential functions, ψ and χ, resulting in

σ11 = χ,22, σ22 = χ,11, σ12 = −χ,12,
σ32 = −ψ,1, σ31 = ψ,2,

(A-3)

so that the stress components remain independent of x3. The strain components εij must

also be independent of x3, resulting in the strain-displacement relations

ε11 = u1,1, ε22 = u2,2, ε33 = Ax1 +Bx2 + C,

2ε23 = u3,2 + ωx1, 2ε13 = u3,1 − ωx2, 2ε12 = u1,2 + u1,2.
(A-4)

The displacements ui, are independent of x3, ω is an arbitrary constant associated with

torsion about the x3-axis and the arbitrary constants A, B, and C are associated with

bending about the line Ax1 + Bx2 + C = 0. The non-zero compatibility conditions are

given by

ε13,2 − ε23,1 = −ω, ε11,22 + ε22,11 − 2ε12,12 = 0. (A-5)

A-1



A-2

The constants A, B, C and ω must be set to zero so that the total displacements, derived

from eq. (A-4), remain independent of x3.

Following the contracted notation where 11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5,

12 → 6, the stress-strain relations are given by

εα = sαβσβ . (A-6)

Here α, β = 1, . . . , 6, sαβ are the elastic compliance components of the material and

εα and σα are the strain and stress components, respectively, in their contracted form.

Elimination of σ3 from eq. (A-6) leads to the stress-strain relations given as

εα = s′αβσβ +
sα3
s33

ε3, (A-7)

where the reduced elastic compliance components are given by

s′αβ = sαβ −
sα3s3β
s33

. (A-8)

A simple substitution of the elastic compliance components sαβ in eq. (A-8) reveals the

symmetry of the reduced elastic compliance matrix s′ and that

s′α3 = s′3α = 0 (α = 1, . . . , 6). (A-9)

Hence, omission of the components s′α3 and s
′
3α leads to a 5×5 reduced compliance matrix,

s′.

The stress-strain relations in terms of the two Airy potential functions, ψ and χ, is ob-

tained by substitution of the stress components given in eq. (A-3) into eq. (A-7), resulting

in

εα = s′α1χ,22 + s′α2χ,11 − s′α4ψ,1 + s′α5ψ,2 − s′α6χ,12 +
sα3
s33

ε3. (A-10)

Satisfaction of the compatibility conditions, given in eq. (A-5) (with ω = 0), in contracted

notation and after some mathematical manipulations, as describe by Ting (1996, pp. 121-

122), leads to the homogeneous differential equation of sixth order

(L2L4 − L3L3)χ = 0. (A-11)

The operators Lj for j = 2, 3, 4 are differential operators of order j, which are given in

detail by Ting (1996, pp. 122).

Without loss of generality, χ may be defined as

χ(x1, x2) = F (z), (A-12)



A-3

where

z = x1 + px2. (A-13)

Substitution of eq. (A-12) into eq. (A-11) leads to the sextic equation in p, given by

l2(p)l4(p)− l3(p)l3(p) = 0. (A-14)

The equations lj(p) for j = 2, 3, 4 represent polynomials in p of degree j and are given by

l2(p) = s′55p
2 − 2s′45p+ s′44,

l3(p) = s′15p
3 − (s′14 + s′56)p

2 + (s′25 + s′46)p− s′24,

l4(p) = s′11p
4 − 2s′16p

3 + (2s′12 + s′66)p
2 − 2s′26p+ s′22.

(A-15)

The six roots p of eq. (A-14) are the eigenvalues of the compatability equations and

depend on the elastic constants of the material. They consist of three pairs of complex

conjugates in the form of

pα+3 = pα, ℑ(pα) > 0, (α = 1, 2, 3), (A-16)

where the overbar designates the complex conjugate of the quantity and ℑ designates the

imaginary part of the quantity in parentheses.

A representation of a general solution for both, the stress function and the displacement,

fields is given in Ting (1996, pp. 128-131). The displacements ui are expressed with the

aid of two auxiliary functions which depend upon the eigenvalues pβ (β = 1, 2) and the

reduced compliance components s′αm for m = 1, 2, 4, 5, 6. For α = 1, 2, 4, these auxiliary

functions take the form

ξα(pβ) = p2βs
′
α1 − pβs

′
α6 + s′α2 + λβ(pβs

′
α5 − s′α4),

ηα(p3) = λ3(p
2
3s

′
α1 − p3s

′
α6 + s′α2) + (p3s

′
α5 − s′α4),

(A-17)

where

λα = − l3(pα)
l2(pα)

= − l4(pα)
l3(pα)

, for α = 1, 2,

λ3 = − l2(p3)
l3(p3)

= − l3(p3)
l4(p3)

,

(A-18)

and lj(p) for j = 2, 3, 4 are as defined in eqs. (A-15).



Appendix B

Stroh Formalism

In this appendix, a brief summary of the Stroh (1958) formalism is given based on the

presentation of Ting (1996). Stroh (1958) developed the expressions for the stress and

displacement fields within an anisotropic elastic material, under the assumption that the

three-dimensional displacement field depends solely on the two in-plane coordinates, say

x1 and x2, of the media, meaning

ui = ui(x1, x2) for i = 1, 2, 3. (B-1)

The strain components are related to the displacement components by

εij =
1

2
(ui,j + uj,i) for i, j = 1, 2, 3. (B-2)

Hence, the stress-strain relations may be expressed as

σij = Cijmnum,n for i, j,m, n = 1, 2, 3. (B-3)

The elastic stiffness components are denoted by Cijmn and based on eq. (B-3) the equations

of equilibrium are found as

Cijmnum,nj = 0. (B-4)

Without loss of generality, the displacements may be written as

ui = aif(z), (B-5)

where z is given in eq. (A-13), f(z) is an arbitrary function of z and ai are unknown

complex constants to be determined. Differentiation of the displacement expressions and

substitution into the equations of equilibrium (eq. (B-4)) result in

{
Q + p(R+RT ) + p2T

}
a = 0. (B-6)
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As in the Lekhnitskii (1950) formalism, p represents the eigenvalues of the equations

of compatibility, and the 3 × 3 matrices Q, R and T depend on the elastic stiffness

components by

Qim = Ci1m1 Rim = Ci1m2 Tim = Ci2m2. (B-7)

The sextic equation for p is obtained by demanding that eq. (B-6) produce a nontrivial

solution for a. Hence,

|Q+ p(R+RT ) + p2T| = 0 (B-8)

leading to three pairs of complex conjugate values for p in the form of eq. (A-16).

Since the strain components, εij, are independent of x3, the stress components, σij , are

also independent of x3. Therefore, the equilibrium equations may be represented in their

reduced form, as shown in eq. (A-2). Eq. (A-2) allows definition of an Airy stress function,

ϕi, resulting in

σi1 = −ϕi,2 σi2 = ϕi,1. (B-9)

The stress expressions may also be represented by

σi1 = −pbif ′(z) σi2 = bif
′(z) for i = 1, 2, 3. (B-10)

Thus, the stress function ϕi is found as

ϕi = bif(z). (B-11)

Based on the stress-strain relations, which contains displacement expressions as shown in

eq. (B-3), it may be seen that the unknown complex constants bi are associated with ai

by

b = (RT + pT)a = −1

p
(Q+ pR)a. (B-12)

The general solutions for the displacement field and stress function are obtained by su-

perposing the six solutions of each eigenvalue and eigenvector as

u =
3∑

α=1

{aαfα(zα) + aαfα+3(zα)} ,

φ =
3∑

α=1

{
bαfα(zα) + bαfα+3(zα)

}
.

(B-13)

The complex eigenvectors aα and bα are known as Stroh eigenvectors and are associated

with their conjugates by

aα+3 = aα bα+3 = bα for α = 1, 2, 3. (B-14)
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The arbitrary functions fα(zα) may posses the following form

fα(zα) = f(zα)qα fα+3(zα) = f(zα)q̃α for α = 1, 2, 3, (B-15)

where qα and q̃α are arbitrary complex constants and zα = x1+pαx2, as noted in eq. (A-13).

In matrix notation, the Stroh eigenvectors are defined by A and B, where A = [a1,a2,a3]

and B = [b1, b2, b3]. In this form it may be seen that A and B span the space of the

displacement and traction vectors, respectively.

Explicitly the general expressions of the Stroh eigenvectors A and B are obtained by

comparing the Lekhnitskii (1950) formalism to the Stroh (1958) formalism, resulting in

the expressions given in Ting (1996, pp. 170-171) as

A =




k1ξ1(p1) k2ξ1(p2) k3η1(p3)

k1p1
−1ξ2(p1) k2p2

−1ξ2(p2) k3p3
−1η2(p3)

k1p1
−1ξ4(p1) k2p2

−1ξ4(p2) k3p3
−1η4(p3)


 , (B-16)

B =




−k1p1 −k2p2 −k3p3λ3
k1 k2 k3λ3

−k1λ1 −k2λ2 −k3


 (B-17)

and

B−1 =
1

∆




−k−1
1 (1− λ2λ3) −k−1

1 (p2 − λ2λ3p3) −k−1
1 λ3(p2 − p3)

k−1
2 (1− λ1λ3) k−1

2 (p1 − λ1λ3p3) k−1
2 λ3(p1 − p3)

k−1
3 (λ1 − λ2) k−1

3 (λ1p2 − λ2p1) −k−1
3 (p1 − p2)


 , (B-18)

where

∆ = (p1 − p2) + λ3{(λ1p2 − λ2p1)− p3(λ1 − λ2)}. (B-19)

The auxiliary functions ξα(pβ) and ηα(p3), for α = 1, 2, 4 and β = 1, 2, and the ratios

λα, for α = 1, 2, 3, are defined in eqs. (A-17) and (A-18), respectively. The normalization

factors kj for j = 1, 2, 3 have to satisfy relations given by Ting (1996, p. 171). A simple

matrix multiplication reveals their absence from the resultant of AB−1. In addition, they

are not needed to obtain the stress and displacement fields.



Appendix C

Determination of mode mixity for

the ACP specimen

In this appendix, the asymmetric cut-ply (ACP) specimen, shown schematically in Fig. 1.13,

mode mixity determination is extended for general cases, where the same flexural modulus

of laminate and sublaminates is not assumed. Also, some expressions from the analytic

characterization, which was developed by Charalambous et al. (2015a) for the investigated

ACP specimen and an adjusted four-point bend (FPB) test fixture, are briefly described.

Referring to Williams (1988) and Charalambous et al. (2015a), the ACP specimen may

be treated as an Euler-Bernoulli beam. Next to the delamination tip, the change of the

elastic potential energy ∆U is equal to the difference between the external work performed

by the applied moment and the strain energy (see Williams, 1988). Hence, this change

caused by an incremental delamination extension ∆a may be obtained to be

∆U =
M2

2(EI)Tot

[
(EI)Tot
(EI)Low

− 1

]
∆a, (C-1)

where the bending stiffness of the non-delaminated composite laminate and the lower

sublaminate are denoted by (EI)Tot and (EI)Low, respectively, and the overall bending

moment is denoted byM . It should be noted that the second term in Eq. (C-1) represents

the external work of the applied bending moment; since no moment is applied on the upper

sublaminate, the change in the strain energy is related only to the lower sublaminate (see

Fig. 1.16a).

The expression EI refers to the equivalent bending stiffness, which depends upon the

flexural modulus and the second moment of area Izz of all plies within the laminate

segment being analyzed. A schematic view of the equivalent cross-section of sublaminate

i is shown in Fig. 1.17, in which a local coordinate system is located at the equivalent
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cross-section centroid; B and hi represent the width and the height of sublaminate i,

respectively. Thus, the expression for the total energy release rate may be written as

G = lim
∆a→0

1

B

∆U

∆a
=

M2

2B(EI)Tot

[
(EI)Tot
(EI)Low

− 1

]
. (C-2)

Referring to Fig. 1.16b, pure mode I is obtained when MI is applied to both sublaminates

in opposite directions; whereas, pure mode II in Fig. 1.16c is obtained when the curvature

of both sublaminates is the same. An identical sublaminate curvature in the vicinity of

the delamination tip may be written as

ψMII

(EI)Up
=

MII

(EI)Low
, (C-3)

so that

ψ =
(EI)Up
(EI)Low

, (C-4)

where (EI)Up is the bending stiffness of the upper sublaminate. Since moment equilibrium

in Fig. 1.16 must be fulfilled, one obtains

MI =
ψM

(1 + ψ)
,

MII =
M

(1 + ψ)
.

(C-5)

Referring to Williams (1988), the components of the total energy release rate associated

with each delamination deformation mode may be written as

GI =
MI

2

2B(EI)Tot

[
(EI)Tot
(EI)Low

+
(EI)Tot
(EI)Up

]
,

GII =
(1 + ψ)2MII

2

2B(EI)Tot

[
(EI)Tot

(1 + ψ)2(EI)Low
+

ψ2(EI)Tot
(1 + ψ)2(EI)Up

− 1

]
.

(C-6)

By substituting Eq. (C-5) into Eq. (C-6), it may be obtained that the components of the

total energy release rate associated with each delamination deformation mode written as

a function of the overall applied bending moment M may be given as

GI =
ψ2M2

2B(1 + ψ)2(EI)Tot

[
(EI)Tot
(EI)Low

+
(EI)Tot
(EI)Up

]
,

GII =
M2

2B(1 + ψ)2(EI)Tot

[
(EI)Tot
(EI)Low

+
ψ2(EI)Tot
(EI)Up

− (1 + ψ)2
]
.

(C-7)

Thus, the general expression for the ACP specimen mode-mixture may be written as

φ =
GII
G =

1

(1 + ψ)

[
(EI)Tot − (1 + ψ)(EI)Low

(EI)Tot + (EI)Low

]
. (C-8)
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In cases where specimen composite strip lay-up consists plies of identical properties (same

thickness, material properties and orientation), the ACP specimen mode-mixture may be

expressed solely by means of χ, as presented in the work of Charalambous et al. (2015a),

where

φ
∣∣
identical plies lay−up

=
GII
G =

3(1− χ)4

(1− 3χ+ 3χ2)(3− 3χ+ χ2)
, (C-9)

and χ is described in Table 1.3.

The expression for the overall bending moment, which is based upon the kinematic analy-

sis of the ACP specimen end-tab large rotation performed by Charalambous et al. (2015a),

is given by

M =
P

2cos2β
[(D + tT ) sin β − dx − µtT cos β] . (C-10)

The expressions for the applied forces Q and one of the formed moment arms de, which

were also obtained from the kinematic analysis of the ACP specimen end-tab large rotation

performed by Charalambous et al. (2015a), are given respectively by

Q = P/(2 cosβ),

de = (D + tT ) tanβ − dx/ cos β,
(C-11)

where the relationship between the ACP specimen rigid rotation angle β and the testing

machine cross-head displacement c, as was found by Charalambous et al. (2015a), may

be written as

β =






2 arctan



dx −

√
dx

2 − c [2(D + tT )− c]

2(D + tT )− c


 , c < 2(D + tT )

2 arctan

(
c

2dx

)
, c = 2(D + tT )

2 arctan



−dx +

√
dx

2 + c [c− 2(D + tT )]

c− 2(D + tT )


 , c > 2(D + tT )

; (C-12)

all relevant parameters are described in Table 1.3.

Employing the same approach considered in the work of Charalambous et al. (2015a),

the local curvature of the deformed ACP specimen (see Fig. 1.15b) with respect to the

curvilinear abscissa may be written as

dθ

ds
=

M

(EI)(s)
, (C-13)

where the local bending stiffness is given by

(EI)(s) =





(EI)Low , 0 ≤ s ≤ a

(EI)Tot , a < s ≤ L
. (C-14)
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Integration of Eq. (C-13), while accounting for symmetry conditions at s = 0 and assuming

delamination is extended prior specimen axial elongation occurs, leads to the following

expressions for the two specimen angles, which are shown in Fig. 1.15b

θ∗ = a
M

(EI)Low
,

β =
M

(EI)Tot

{
L+ a

[
(EI)Tot
(EI)Low

− 1

]}
.

(C-15)

The delamination length may be extracted from Eq. (C-15)2, resulting in

a =
1

k̄

[
β
(EI)Tot
M

− L

]
, (C-16)

where

k̄ =
(EI)Tot
(EI)Low

− 1, (C-17)

and the overall bending moment M and the rotation angle β may be evaluate from

Eqs. (C-10) and (C-12), respectively.

The fatigue delamination growth rate may be obtained by differentiating Eq. (C-16) with

respect to the number of loading cycles N , resulting in

da

dN
=

∂a

∂M

∂M

∂N
= −β

k̄

(EI)Tot
M2

dM(a)

dN
. (C-18)

In Eq. (C-16), the maximum cyclic bending moment M(a) is a variable, whereas other

parameters are constant under displacement control fatigue loading conditions.

A stability analysis of delamination propagation was performed in the work of Char-

alambous et al. (2015a). It was concluded that when a quasi-static test is carried out

in displacement control regime, the obtained delamination propagation is always stable.

Also, it was shown that a change in angle β is independent of delamination extension

(change in delamination length a). Thus, the applied bending moment in Eq. (C-16) may

be also written as

M = β

[
(EI)Tot
ak̄ + L

]
. (C-19)

It should be noted that the delamination propagation in displacement control regime is

always stable, since
dM

da
= −k̄β (EI)Tot(

ak̄ + L
)2 ≤ 0. (C-20)



Appendix D

Tabulated results of benchmark

problems

In order to validate the developed methods for stress intensity factor extraction, using

DE (Section 3.1) and the three-dimensional M-integral (Section 3.2), three benchmark

problems using the known asymptotic solutions with the stress intensity factors in Ta-

ble 3.1 were solved by performing numerical analyses. The FE model of a disk with an

edge delamination was constructed in ADINA (Bathe, 2011), as described in Section 3.3

and as shown in Fig. 3.3. For each benchmark problem, the corresponding stress intensity

factors, as detailed in Table 3.1, were substituted into the first term of the asymptotic

displacement field (eqs. (2.64) and (2.65)) in order to evaluate the displacement vector at

each nodal point on the outer surfaces of the FE model. The delamination faces were kept

traction free. Then, the FE model was analyzed to obtain a displacement field throughout

the model. For each benchmark problem, the expected results are the same as the applied

stress intensity factors (Table 3.1). The DE evaluated stress intensity factors were found

to be very accurate, which is typical for benchmark problems.

In this section, theM-integral obtained stress intensity factors are presented in a tabulated

form as a function of the normalized coordinate x3/B (see Fig. 3.1). In calculating theM-

integral, the integration is performed within a domain/volume of elements that surrounds

the delamination front, as illustrated in Fig. 3.2 where five representative Vk volumes

(domains) are shown. The stress intensity factors were calculated by means of the three-

dimensionalM-integral (described in Section 3.2) for each slice of elements within domains

1 to 4 (one element thick through the model thickness, see Figs. 3.2a to 3.2d) along the

delamination front of each FE model. The M-integral results for the first benchmark

problem, where the applied stress intensity factors were K1 = 1, K2 = 0 and KIII = 0,

are presented in Tables D.1 through D.3. The results obtained for the second benchmark

problem, where the applied stress intensity factors were K1 = 0, K2 = 1 and KIII = 0, are
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presented in Tables D.4 through D.6. In the third benchmark problem, where the applied

stress intensity factors were K1 = 0, K2 = 0 and KIII = 1, the obtained stress intensity

factors extracted by means of the M-integral are presented in Tables D.7 through D.9.

Table D.1: Results for K1 for the first benchmark problem: K1 = 1, K2 = 0, KIII = 0.
The mesh is shown in Fig. 3.3 and the deformed mesh in Fig. 3.4a.

M domain 1 domain 2 domain 3 domain 4

x3/B K1 K1 K1 K1

0.025 1.02894 1.00354 1.00278 1.00257

0.075 1.00774 1.00179 1.00126 1.00105

0.125 1.01297 1.00184 1.00125 1.00105

0.175 1.01147 1.00173 1.00115 1.00094

0.225 1.01183 1.00172 1.00113 1.00093

0.275 1.01171 1.00169 1.00111 1.00091

0.325 1.01172 1.00169 1.00111 1.00090

0.375 1.01171 1.00168 1.00110 1.00089

0.425 1.01171 1.00168 1.00110 1.00089

0.475 1.01171 1.00168 1.00110 1.00089

0.525 1.01171 1.00168 1.00110 1.00089

0.575 1.01171 1.00168 1.00110 1.00089

0.625 1.01171 1.00168 1.00110 1.00089

0.675 1.01172 1.00169 1.00111 1.00090

0.725 1.01171 1.00169 1.00111 1.00091

0.775 1.01183 1.00172 1.00113 1.00093

0.825 1.01147 1.00173 1.00115 1.00094

0.875 1.01297 1.00184 1.00125 1.00105

0.925 1.00774 1.00179 1.00126 1.00105

0.975 1.02894 1.00354 1.00278 1.00257
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Table D.2: Results for K2 for the first benchmark problem: K1 = 1, K2 = 0, KIII = 0.
The mesh is shown in Fig. 3.3 and the deformed mesh in Fig. 3.4a.

M domain 1 domain 2 domain 3 domain 4

x3/B K2 K2 K2 K2

0.025 -0.001993 0.000401 -0.000362 -0.000473

0.075 -0.000980 0.000935 0.000122 -0.000005

0.125 -0.001064 0.000919 0.000106 -0.000018

0.175 -0.001022 0.000938 0.000125 0.000001

0.225 -0.001025 0.000939 0.000126 0.000002

0.275 -0.001025 0.000939 0.000126 0.000002

0.325 -0.001025 0.000939 0.000126 0.000002

0.375 -0.001025 0.000939 0.000126 0.000002

0.425 -0.001025 0.000939 0.000126 0.000002

0.475 -0.001025 0.000939 0.000126 0.000002

0.525 -0.001025 0.000939 0.000126 0.000002

0.575 -0.001025 0.000939 0.000126 0.000002

0.625 -0.001025 0.000939 0.000126 0.000002

0.675 -0.001025 0.000939 0.000126 0.000002

0.725 -0.001025 0.000939 0.000126 0.000002

0.775 -0.001025 0.000939 0.000126 0.000002

0.825 -0.001022 0.000938 0.000125 0.000001

0.875 -0.001064 0.000919 0.000106 -0.000018

0.925 -0.000980 0.000935 0.000122 -0.000005

0.975 -0.001993 0.000401 -0.000362 -0.000473
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Table D.3: Results for KIII for the first benchmark problem: K1 = 1, K2 = 0, KIII = 0.
The mesh is shown in Fig. 3.3 and the deformed mesh in Fig. 3.4a.

M domain 1 domain 2 domain 3 domain 4

x3/B KIII KIII KIII KIII

0.025 0.000689 0.001537 0.001498 0.001494

0.075 0.000154 0.000123 0.000122 0.000121

0.125 0.000003 0.000028 0.000026 0.000026

0.175 0.000000 -0.000004 -0.000003 -0.000003

0.225 -0.000002 -0.000000 -0.000001 -0.000001

0.275 -0.000002 -0.000002 -0.000002 -0.000002

0.325 -0.000001 -0.000001 -0.000001 -0.000001

0.375 -0.000000 -0.000001 -0.000001 -0.000001

0.425 -0.000000 -0.000000 -0.000000 -0.000000

0.475 -0.000000 -0.000000 -0.000000 -0.000000

0.525 0.000000 0.000000 0.000000 0.000000

0.575 0.000000 0.000000 0.000000 0.000000

0.625 0.000000 0.000001 0.000001 0.000001

0.675 0.000001 0.000001 0.000001 0.000001

0.725 0.000002 0.000002 0.000002 0.000002

0.775 0.000002 0.000000 0.000001 0.000001

0.825 -0.000000 0.000004 0.000003 0.000003

0.875 -0.000003 -0.000028 -0.000026 -0.000026

0.925 -0.000154 -0.000123 -0.000122 -0.000121

0.975 -0.000689 -0.001537 -0.001498 -0.001494
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Table D.4: Results for K1 for the second benchmark problem: K1 = 0, K2 = 1, KIII = 0.
The mesh is shown in Fig. 3.3 and the deformed mesh in Fig. 3.4b.

M domain 1 domain 2 domain 3 domain 4

x3/B K1 K1 K1 K1

0.025 0.007307 -0.000698 -0.000138 -0.000086

0.075 0.010703 -0.000569 -0.000017 0.000049

0.125 0.009804 -0.000585 -0.000028 0.000034

0.175 0.010052 -0.000585 -0.000029 0.000034

0.225 0.009980 -0.000587 -0.000031 0.000032

0.275 0.009999 -0.000588 -0.000031 0.000032

0.325 0.009993 -0.000588 -0.000032 0.000031

0.375 0.009994 -0.000588 -0.000032 0.000031

0.425 0.009993 -0.000588 -0.000032 0.000031

0.475 0.009993 -0.000589 -0.000032 0.000031

0.525 0.009993 -0.000589 -0.000032 0.000031

0.575 0.009993 -0.000588 -0.000032 0.000031

0.625 0.009994 -0.000588 -0.000032 0.000031

0.675 0.009993 -0.000588 -0.000032 0.000031

0.725 0.009999 -0.000588 -0.000031 0.000032

0.775 0.009980 -0.000587 -0.000031 0.000032

0.825 0.010052 -0.000585 -0.000029 0.000034

0.875 0.009804 -0.000585 -0.000028 0.000034

0.925 0.010703 -0.000569 -0.000017 0.000049

0.975 0.007307 -0.000698 -0.000138 -0.000086
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Table D.5: Results for K2 for the second benchmark problem: K1 = 0, K2 = 1, KIII = 0.
The mesh is shown in Fig. 3.3 and the deformed mesh in Fig. 3.4b.

M domain 1 domain 2 domain 3 domain 4

x3/B K2 K2 K2 K2

0.025 0.78967 0.99962 1.00351 1.00521

0.075 0.79012 0.99398 0.99893 1.00076

0.125 0.78906 0.99427 0.99892 1.00072

0.175 0.78908 0.99392 0.99865 1.00046

0.225 0.78900 0.99391 0.99861 1.00042

0.275 0.78897 0.99385 0.99856 1.00036

0.325 0.78895 0.99383 0.99853 1.00034

0.375 0.78893 0.99381 0.99852 1.00032

0.425 0.78892 0.99380 0.99851 1.00031

0.475 0.78892 0.99379 0.99850 1.00031

0.525 0.78892 0.99379 0.99850 1.00031

0.575 0.78892 0.99380 0.99851 1.00031

0.625 0.78893 0.99381 0.99852 1.00032

0.675 0.78895 0.99383 0.99853 1.00034

0.725 0.78897 0.99385 0.99856 1.00036

0.775 0.78900 0.99391 0.99861 1.00042

0.825 0.78908 0.99392 0.99865 1.00046

0.875 0.78906 0.99427 0.99892 1.00072

0.925 0.79012 0.99398 0.99893 1.00076

0.975 0.78967 0.99962 1.00351 1.00521
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Table D.6: Results for KIII for the second benchmark problem: K1 = 0, K2 = 1, KIII = 0.
The mesh is shown in Fig. 3.3 and the deformed mesh in Fig. 3.4b.

M domain 1 domain 2 domain 3 domain 4

x3/B KIII KIII KIII KIII

0.025 -0.005274 -0.008170 -0.008122 -0.008121

0.075 0.000337 0.000920 0.000936 0.000935

0.125 -0.000266 -0.000496 -0.000496 -0.000496

0.175 -0.000042 0.000019 0.000019 0.000019

0.225 -0.000057 -0.000078 -0.000078 -0.000078

0.275 -0.000037 -0.000033 -0.000033 -0.000033

0.325 -0.000028 -0.000030 -0.000030 -0.000030

0.375 -0.000019 -0.000019 -0.000019 -0.000019

0.425 -0.000011 -0.000012 -0.000012 -0.000012

0.475 -0.000004 -0.000004 -0.000004 -0.000004

0.525 0.000004 0.000004 0.000004 0.000004

0.575 0.000011 0.000012 0.000012 0.000012

0.625 0.000019 0.000019 0.000019 0.000019

0.675 0.000028 0.000030 0.000030 0.000030

0.725 0.000037 0.000033 0.000033 0.000033

0.775 0.000057 0.000078 0.000078 0.000078

0.825 0.000042 -0.000019 -0.000019 -0.000019

0.875 0.000266 0.000496 0.000496 0.000496

0.925 -0.000337 -0.000920 -0.000936 -0.000935

0.975 0.005274 0.008170 0.008122 0.008121
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Table D.7: Results for K1 for the third benchmark problem: K1 = 0, K2 = 0, KIII = 1.
The mesh is shown in Fig. 3.3 and the deformed mesh in Fig. 3.4c.

M domain 1 domain 2 domain 3 domain 4

x3/B K1 K1 K1 K1

0.025 -0.000276 0.000112 0.000085 0.000083

0.075 0.000049 0.000035 0.000040 0.000040

0.125 0.000021 0.000018 0.000016 0.000016

0.175 -0.000003 0.000000 0.000000 0.000000

0.225 0.000005 0.000004 0.000004 0.000004

0.275 0.000005 0.000001 0.000001 0.000001

0.325 0.000001 0.000001 0.000001 0.000001

0.375 0.000000 0.000000 0.000000 0.000000

0.425 0.000000 0.000000 0.000000 0.000000

0.475 0.000000 0.000000 0.000000 0.000000

0.525 -0.000000 -0.000000 -0.000000 -0.000000

0.575 -0.000000 -0.000000 -0.000000 -0.000000

0.625 -0.000000 -0.000000 -0.000000 -0.000000

0.675 -0.000001 -0.000001 -0.000001 -0.000001

0.725 -0.000005 -0.000001 -0.000001 -0.000001

0.775 -0.000005 -0.000004 -0.000004 -0.000004

0.825 0.000003 -0.000000 -0.000000 -0.000000

0.875 -0.000021 -0.000018 -0.000016 -0.000016

0.925 -0.000049 -0.000035 -0.000040 -0.000040

0.975 0.000276 -0.000112 -0.000085 -0.000083
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Table D.8: Results for K2 for the third benchmark problem: K1 = 0, K2 = 0, KIII = 1.
The mesh is shown in Fig. 3.3 and the deformed mesh in Fig. 3.4c.

M domain 1 domain 2 domain 3 domain 4

x3/B K2 K2 K2 K2

0.025 -0.002600 -0.004050 -0.004067 -0.004076

0.075 0.000465 0.000496 0.000526 0.000533

0.125 -0.000211 -0.000181 -0.000189 -0.000193

0.175 0.000053 0.000028 0.000030 0.000031

0.225 -0.000025 -0.000018 -0.000018 -0.000019

0.275 0.000001 -0.000003 -0.000003 -0.000003

0.325 -0.000005 -0.000004 -0.000004 -0.000005

0.375 -0.000001 -0.000002 -0.000002 -0.000002

0.425 -0.000001 -0.000001 -0.000001 -0.000001

0.475 -0.000000 -0.000000 -0.000000 -0.000000

0.525 0.000000 0.000000 0.000000 0.000000

0.575 0.000001 0.000001 0.000001 0.000001

0.625 0.000001 0.000002 0.000002 0.000002

0.675 0.000005 0.000004 0.000004 0.000005

0.725 -0.000001 0.000003 0.000003 0.000003

0.775 0.000025 0.000018 0.000018 0.000019

0.825 -0.000053 -0.000028 -0.000030 -0.000031

0.875 0.000211 0.000181 0.000189 0.000193

0.925 -0.000465 -0.000496 -0.000526 -0.000533

0.975 0.002600 0.004050 0.004067 0.004076
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Table D.9: Results for KIII for the third benchmark problem: K1 = 0, K2 = 0, KIII = 1.
The mesh is shown in Fig. 3.3 and the deformed mesh in Fig. 3.4c.

M domain 1 domain 2 domain 3 domain 4

x3/B KIII KIII KIII KIII

0.025 0.96960 1.00157 1.00212 1.00225

0.075 0.96217 1.00027 1.00096 1.00111

0.125 0.96276 0.99954 1.00015 1.00031

0.175 0.96242 0.99948 1.00011 1.00027

0.225 0.96240 0.99939 1.00002 1.00018

0.275 0.96236 0.99937 1.00000 1.00015

0.325 0.96234 0.99934 0.99997 1.00013

0.375 0.96233 0.99933 0.99996 1.00012

0.425 0.96232 0.99932 0.99995 1.00011

0.475 0.96232 0.99932 0.99995 1.00010

0.525 0.96232 0.99932 0.99995 1.00010

0.575 0.96232 0.99932 0.99995 1.00011

0.625 0.96233 0.99933 0.99996 1.00012

0.675 0.96234 0.99934 0.99997 1.00013

0.725 0.96236 0.99937 1.00000 1.00015

0.775 0.96240 0.99939 1.00002 1.00018

0.825 0.96242 0.99948 1.00011 1.00027

0.875 0.96276 0.99954 1.00015 1.00031

0.925 0.96217 1.00027 1.00096 1.00111

0.975 0.96960 1.00157 1.00212 1.00225



Appendix E

Tabulated results of convergence

study

In this section, the stress intensity factors obtained by means of the M-integral (Sec-

tion 3.2) and the DE method (Section 3.1) are presented in a tabulated form as a function

of the normalized coordinate x3/B (see Fig. 3.1). The M-integral results for the finest

mesh, in which one of the delamination tips is shown in Fig. 4.8c, are presented in Ta-

ble E.1. The stress intensity factors obtained by the DE method are also presented for

validation reasons. It may be seen that the stress intensity factors obtained by the DE

method are related to the normalized location of the common edge of adjacent elements

along the delamination front, whereas the M-integral results are related to normalized

location of the mid-point of the element thickness or slice of elements (one element thick)

in which the integration is performed.
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Table E.1: Obtained stress intensity factors calculated by means of the M-integral and
the DE method for the finest mesh shown in Fig. 4.8c.

M-integral DE

x3/B K1 K2 KIII x3/B K1 K2 KIII

Pa
√
m ·m−iε × 106 Pa

√
m× 106 Pa

√
m ·m−iε × 106 Pa

√
m× 106

0.025 1.153 2.282 1.184 0.00 1.548 3.047 2.064
0.075 1.001 2.180 0.673 0.05 1.032 2.443 0.934
0.125 0.979 2.191 0.457 0.10 0.988 2.174 0.550
0.175 0.967 2.203 0.334 0.15 0.974 2.194 0.395
0.225 0.956 2.210 0.251 0.20 0.974 2.280 0.317
0.275 0.946 2.215 0.189 0.25 0.965 2.211 0.223
0.325 0.938 2.218 0.138 0.30 0.956 2.207 0.165
0.375 0.932 2.220 0.094 0.35 0.934 2.209 0.116
0.425 0.927 2.221 0.055 0.40 0.929 2.210 0.075
0.475 0.925 2.221 0.018 0.45 0.926 2.211 0.036
0.525 0.925 2.221 -0.018 0.50 0.924 2.211 0.000
0.575 0.927 2.221 -0.055 0.55 0.926 2.211 -0.036
0.625 0.932 2.220 -0.094 0.60 0.929 2.210 -0.075
0.675 0.938 2.218 -0.138 0.65 0.934 2.209 -0.116
0.725 0.946 2.215 -0.189 0.70 0.956 2.207 -0.165
0.775 0.956 2.210 -0.251 0.75 0.965 2.211 -0.223
0.825 0.967 2.203 -0.334 0.80 0.974 2.280 -0.317
0.875 0.979 2.191 -0.457 0.85 0.974 2.194 -0.395
0.925 1.001 2.180 -0.673 0.90 0.988 2.174 -0.550
0.975 1.153 2.282 -1.184 0.95 1.032 2.443 -0.934

1.00 1.548 3.047 -2.064
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Table E.2: Difference between the stress intensity factors calculated for the fifth (refer-
ence) and the fourth (checked) domains of integration of the finer mesh shown in Fig. 4.8c.

difference (%)

x3/B K1 K2 KIII

0.025 -0.008 -0.028 0.004
0.075 0.005 -0.045 -0.012
0.125 -0.002 -0.036 -0.003
0.175 -0.000 -0.038 -0.006
0.225 -0.001 -0.037 -0.004
0.275 -0.001 -0.037 -0.005
0.325 -0.001 -0.037 -0.005
0.375 -0.001 -0.037 -0.005
0.425 -0.001 -0.037 -0.005
0.475 -0.001 -0.037 -0.005
0.525 -0.001 -0.037 -0.005
0.575 -0.001 -0.037 -0.005
0.625 -0.001 -0.037 -0.005
0.675 -0.001 -0.037 -0.005
0.725 -0.001 -0.037 -0.005
0.775 -0.001 -0.037 -0.004
0.825 -0.000 -0.038 -0.006
0.875 -0.002 -0.036 -0.003
0.925 0.005 -0.045 -0.012
0.975 -0.008 -0.028 0.004



Appendix F

Brazilian disk specimens: additional

data

In this section, the calculated data obtained for the BD test specimens is presented. For

each BD specimen, the stress intensity factors calculated by means of the M-integral

(Section 3.2) are presented in a tabulated form as a function of the normalized coordinate

x3/B (see Fig. 3.1). The M-integral results for the fine mesh, in which one of the delam-

ination tips is shown in Fig. 4.8b, are presented in Tables F.1 to F.15. The normalized

in-plane stress intensity factors with L̂ = 100 µm, as well as the two phase angles ψ̂ in

eq. (1.12) and φ in eq. (1.14) are also presented. Finally, the critical interface energy

release rate Gic in eq. (1.17) is presented. It may be recalled that the M-integral results

are related to normalized location of the mid-point of the element thickness or slice of

elements (one element thick) in which the integration is performed.
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Table F.1: Stress intensity factors calculated along the delamination front by means
of the three-dimensional M-integral for the largest domain of the fine mesh, as shown
in Fig. 4.8b, used to analyze specimens sp8.2 and sp9.1, separately, as well as their
normalized in-plane stress intensity factors with L̂ = 100 µm, their two phase angles and
their critical interface energy release rate.

sp8.2 ; ω=-2.06◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.514 0.838 0.644 1.576 0.715 0.426 0.337 420.3
0.075 1.453 0.779 0.374 1.510 0.661 0.413 0.211 355.1
0.125 1.428 0.788 0.243 1.486 0.672 0.425 0.140 338.8
0.175 1.405 0.796 0.172 1.464 0.682 0.436 0.100 329.1
0.225 1.384 0.802 0.126 1.444 0.689 0.445 0.074 321.5
0.275 1.367 0.805 0.092 1.427 0.694 0.453 0.055 315.4
0.325 1.353 0.807 0.066 1.413 0.697 0.458 0.040 310.6
0.375 1.343 0.808 0.045 1.403 0.699 0.462 0.027 307.1
0.425 1.336 0.809 0.026 1.396 0.700 0.465 0.016 304.9
0.475 1.333 0.809 0.009 1.393 0.701 0.466 0.005 303.8
0.525 1.333 0.809 -0.009 1.393 0.701 0.466 -0.005 303.8
0.575 1.336 0.809 -0.026 1.396 0.700 0.465 -0.016 304.9
0.625 1.343 0.808 -0.045 1.403 0.699 0.462 -0.027 307.1
0.675 1.353 0.807 -0.066 1.413 0.697 0.458 -0.040 310.6
0.725 1.367 0.805 -0.092 1.427 0.694 0.453 -0.055 315.4
0.775 1.384 0.802 -0.126 1.444 0.689 0.445 -0.074 321.5
0.825 1.405 0.796 -0.172 1.464 0.682 0.436 -0.100 329.1
0.875 1.428 0.788 -0.243 1.486 0.672 0.425 -0.140 338.8
0.925 1.453 0.779 -0.374 1.510 0.661 0.413 -0.211 355.1
0.975 1.514 0.838 -0.644 1.576 0.715 0.426 -0.337 420.3

sp9.1 ; ω=-2.23◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.529 0.881 0.680 1.594 0.756 0.443 0.349 440.4
0.075 1.459 0.818 0.396 1.520 0.699 0.431 0.220 367.1
0.125 1.431 0.827 0.260 1.492 0.710 0.444 0.147 348.6
0.175 1.406 0.835 0.185 1.468 0.721 0.456 0.106 337.9
0.225 1.384 0.841 0.136 1.446 0.728 0.467 0.079 329.6
0.275 1.365 0.845 0.101 1.428 0.733 0.474 0.059 323.0
0.325 1.351 0.847 0.073 1.414 0.736 0.480 0.043 318.0
0.375 1.340 0.848 0.049 1.403 0.739 0.485 0.029 314.3
0.425 1.333 0.849 0.029 1.396 0.740 0.487 0.017 312.0
0.475 1.329 0.849 0.009 1.393 0.741 0.489 0.006 310.8
0.525 1.329 0.849 -0.009 1.393 0.741 0.489 -0.006 310.8
0.575 1.333 0.849 -0.029 1.396 0.740 0.487 -0.017 312.0
0.625 1.340 0.848 -0.049 1.403 0.739 0.485 -0.029 314.3
0.675 1.351 0.847 -0.073 1.414 0.736 0.480 -0.043 318.0
0.725 1.365 0.845 -0.101 1.428 0.733 0.474 -0.059 323.0
0.775 1.384 0.841 -0.136 1.446 0.728 0.467 -0.079 329.6
0.825 1.406 0.835 -0.185 1.468 0.721 0.456 -0.106 337.9
0.875 1.431 0.827 -0.260 1.492 0.710 0.444 -0.147 348.6
0.925 1.459 0.818 -0.396 1.520 0.699 0.431 -0.220 367.1
0.975 1.529 0.881 -0.680 1.594 0.756 0.443 -0.349 440.4
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Table F.2: Stress intensity factors calculated along the delamination front by means
of the three-dimensional M-integral for the largest domain of the fine mesh, as shown
in Fig. 4.8b, used to analyze specimens sp3.1 and sp1.1, separately, as well as their
normalized in-plane stress intensity factors with L̂ = 100 µm, their two phase angles and
their critical interface energy release rate.

sp3.1 ; ω=-2.23◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.580 1.006 0.719 1.655 0.877 0.487 0.347 495.8
0.075 1.501 0.941 0.411 1.571 0.819 0.480 0.215 410.9
0.125 1.470 0.951 0.265 1.541 0.831 0.495 0.142 390.7
0.175 1.444 0.960 0.186 1.516 0.842 0.507 0.101 379.4
0.225 1.421 0.966 0.136 1.493 0.849 0.517 0.074 370.7
0.275 1.402 0.969 0.099 1.475 0.854 0.525 0.055 363.9
0.325 1.387 0.971 0.071 1.460 0.857 0.531 0.040 358.7
0.375 1.376 0.972 0.048 1.449 0.860 0.535 0.027 354.9
0.425 1.369 0.973 0.028 1.442 0.861 0.538 0.016 352.4
0.475 1.365 0.973 0.009 1.438 0.861 0.540 0.005 351.2
0.525 1.365 0.973 -0.009 1.438 0.861 0.540 -0.005 351.2
0.575 1.369 0.973 -0.028 1.442 0.861 0.538 -0.016 352.4
0.625 1.376 0.972 -0.048 1.449 0.860 0.535 -0.027 354.9
0.675 1.387 0.971 -0.071 1.460 0.857 0.531 -0.040 358.7
0.725 1.402 0.969 -0.099 1.475 0.854 0.525 -0.055 363.9
0.775 1.421 0.966 -0.136 1.493 0.849 0.517 -0.074 370.7
0.825 1.444 0.960 -0.186 1.516 0.842 0.507 -0.101 379.4
0.875 1.470 0.951 -0.265 1.541 0.831 0.495 -0.142 390.7
0.925 1.501 0.941 -0.411 1.571 0.819 0.480 -0.215 410.9
0.975 1.580 1.006 -0.719 1.655 0.877 0.487 -0.347 495.8

sp1.1 ; ω=-2.64◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.567 1.420 0.863 1.675 1.291 0.657 0.368 641.5
0.075 1.463 1.350 0.479 1.565 1.229 0.666 0.223 520.4
0.125 1.429 1.361 0.303 1.533 1.243 0.681 0.144 496.9
0.175 1.403 1.370 0.208 1.507 1.254 0.694 0.100 485.2
0.225 1.379 1.376 0.148 1.484 1.262 0.705 0.072 476.6
0.275 1.360 1.379 0.107 1.465 1.266 0.713 0.052 469.6
0.325 1.344 1.380 0.075 1.450 1.269 0.719 0.037 464.3
0.375 1.333 1.381 0.050 1.438 1.270 0.723 0.025 460.4
0.425 1.325 1.381 0.029 1.431 1.271 0.726 0.014 457.8
0.475 1.322 1.381 0.009 1.427 1.272 0.728 0.005 456.6
0.525 1.322 1.381 -0.009 1.427 1.272 0.728 -0.005 456.6
0.575 1.325 1.381 -0.029 1.431 1.271 0.726 -0.014 457.8
0.625 1.333 1.381 -0.050 1.438 1.270 0.723 -0.025 460.4
0.675 1.344 1.380 -0.075 1.450 1.269 0.719 -0.037 464.3
0.725 1.360 1.379 -0.107 1.465 1.266 0.713 -0.052 469.6
0.775 1.379 1.376 -0.148 1.484 1.262 0.705 -0.072 476.6
0.825 1.403 1.370 -0.208 1.507 1.254 0.694 -0.100 485.2
0.875 1.429 1.361 -0.303 1.533 1.243 0.681 -0.144 496.9
0.925 1.463 1.350 -0.479 1.565 1.229 0.666 -0.223 520.4
0.975 1.567 1.420 -0.863 1.675 1.291 0.657 -0.368 641.5
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Table F.3: Stress intensity factors calculated along the delamination front by means
of the three-dimensional M-integral for the largest domain of the fine mesh, as shown
in Fig. 4.8b, used to analyze specimens sp14.1 and sp7.2, separately, as well as their
normalized in-plane stress intensity factors with L̂ = 100 µm, their two phase angles and
their critical interface energy release rate.

sp14.1 ; ω=-2.73◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.521 1.188 0.775 1.611 1.063 0.583 0.362 532.0
0.075 1.436 1.120 0.448 1.521 1.002 0.583 0.228 436.7
0.125 1.409 1.130 0.295 1.495 1.015 0.596 0.153 417.4
0.175 1.387 1.139 0.211 1.473 1.025 0.608 0.110 407.4
0.225 1.367 1.145 0.156 1.454 1.033 0.618 0.082 399.9
0.275 1.350 1.149 0.115 1.437 1.037 0.625 0.061 393.9
0.325 1.337 1.151 0.083 1.424 1.041 0.631 0.045 389.3
0.375 1.327 1.152 0.057 1.414 1.043 0.635 0.030 386.0
0.425 1.320 1.153 0.033 1.408 1.044 0.638 0.018 383.8
0.475 1.317 1.153 0.011 1.404 1.044 0.639 0.006 382.7
0.525 1.317 1.153 -0.011 1.404 1.044 0.639 -0.006 382.7
0.575 1.320 1.153 -0.033 1.408 1.044 0.638 -0.018 383.8
0.625 1.327 1.152 -0.057 1.414 1.043 0.635 -0.030 386.0
0.675 1.337 1.151 -0.083 1.424 1.041 0.631 -0.045 389.3
0.725 1.350 1.149 -0.115 1.437 1.037 0.625 -0.061 393.9
0.775 1.367 1.145 -0.156 1.454 1.033 0.618 -0.082 399.9
0.825 1.387 1.139 -0.211 1.473 1.025 0.608 -0.110 407.4
0.875 1.409 1.130 -0.295 1.495 1.015 0.596 -0.153 417.4
0.925 1.436 1.120 -0.448 1.521 1.002 0.583 -0.228 436.7
0.975 1.521 1.188 -0.775 1.611 1.063 0.583 -0.362 532.0

sp7.2 ; ω=-4.10◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.455 1.630 0.959 1.580 1.509 0.762 0.393 699.0
0.075 1.331 1.549 0.558 1.450 1.438 0.781 0.253 555.5
0.125 1.300 1.559 0.370 1.420 1.451 0.796 0.170 530.1
0.175 1.278 1.570 0.266 1.399 1.463 0.808 0.123 519.8
0.225 1.259 1.577 0.197 1.381 1.472 0.817 0.092 513.0
0.275 1.243 1.581 0.146 1.365 1.477 0.825 0.068 507.7
0.325 1.230 1.583 0.106 1.353 1.480 0.830 0.050 503.6
0.375 1.221 1.585 0.072 1.343 1.483 0.835 0.034 500.6
0.425 1.215 1.586 0.042 1.337 1.484 0.837 0.020 498.6
0.475 1.212 1.586 0.014 1.334 1.485 0.839 0.006 497.7
0.525 1.212 1.586 -0.014 1.334 1.485 0.839 -0.006 497.7
0.575 1.215 1.586 -0.042 1.337 1.484 0.837 -0.020 498.6
0.625 1.221 1.585 -0.072 1.343 1.483 0.835 -0.034 500.6
0.675 1.230 1.583 -0.106 1.353 1.480 0.830 -0.050 503.6
0.725 1.243 1.581 -0.146 1.365 1.477 0.825 -0.068 507.7
0.775 1.259 1.577 -0.197 1.381 1.472 0.817 -0.092 513.0
0.825 1.278 1.570 -0.266 1.399 1.463 0.808 -0.123 519.8
0.875 1.300 1.559 -0.370 1.420 1.451 0.796 -0.170 530.1
0.925 1.331 1.549 -0.558 1.450 1.438 0.781 -0.253 555.5
0.975 1.455 1.630 -0.959 1.580 1.509 0.762 -0.393 699.0
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Table F.4: Stress intensity factors calculated along the delamination front by means
of the three-dimensional M-integral for the largest domain of the fine mesh, as shown
in Fig. 4.8b, used to analyze specimens sp1.2 and sp12.1, separately, as well as their
normalized in-plane stress intensity factors with L̂ = 100 µm, their two phase angles and
their critical interface energy release rate.

sp1.2 ; ω=-4.94◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.118 1.637 0.886 1.244 1.542 0.892 0.399 578.0
0.075 1.001 1.567 0.513 1.123 1.482 0.922 0.255 461.1
0.125 0.978 1.577 0.343 1.100 1.494 0.936 0.173 443.2
0.175 0.962 1.586 0.248 1.085 1.505 0.946 0.125 436.8
0.225 0.948 1.592 0.184 1.072 1.512 0.954 0.093 432.7
0.275 0.936 1.595 0.137 1.060 1.516 0.961 0.070 429.5
0.325 0.926 1.597 0.099 1.050 1.519 0.966 0.051 427.1
0.375 0.919 1.599 0.068 1.043 1.520 0.969 0.035 425.3
0.425 0.914 1.599 0.039 1.039 1.521 0.972 0.020 424.1
0.475 0.912 1.600 0.013 1.036 1.522 0.973 0.007 423.5
0.525 0.912 1.600 -0.013 1.036 1.522 0.973 -0.007 423.5
0.575 0.914 1.599 -0.039 1.039 1.521 0.972 -0.020 424.1
0.625 0.919 1.599 -0.068 1.043 1.520 0.969 -0.035 425.3
0.675 0.926 1.597 -0.099 1.050 1.519 0.966 -0.051 427.1
0.725 0.936 1.595 -0.137 1.060 1.516 0.961 -0.070 429.5
0.775 0.948 1.592 -0.184 1.072 1.512 0.954 -0.093 432.7
0.825 0.962 1.586 -0.248 1.085 1.505 0.946 -0.125 436.8
0.875 0.978 1.577 -0.343 1.100 1.494 0.936 -0.173 443.2
0.925 1.001 1.567 -0.513 1.123 1.482 0.922 -0.255 461.1
0.975 1.118 1.637 -0.886 1.244 1.542 0.892 -0.399 578.0

sp12.1 ; ω=-5.27◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.174 2.245 1.133 1.349 2.145 1.009 0.399 944.9
0.075 1.025 2.161 0.653 1.194 2.072 1.048 0.252 762.1
0.125 1.003 2.175 0.436 1.173 2.089 1.059 0.170 738.0
0.175 0.990 2.187 0.315 1.161 2.102 1.066 0.123 731.2
0.225 0.978 2.195 0.234 1.149 2.110 1.072 0.092 727.5
0.275 0.967 2.200 0.174 1.139 2.116 1.077 0.068 724.6
0.325 0.957 2.203 0.126 1.130 2.119 1.081 0.049 722.3
0.375 0.950 2.204 0.085 1.123 2.122 1.084 0.034 720.7
0.425 0.946 2.205 0.049 1.118 2.123 1.086 0.019 719.6
0.475 0.943 2.206 0.016 1.116 2.124 1.087 0.006 719.1
0.525 0.943 2.206 -0.016 1.116 2.124 1.087 -0.006 719.1
0.575 0.946 2.205 -0.049 1.118 2.123 1.086 -0.019 719.6
0.625 0.950 2.204 -0.085 1.123 2.122 1.084 -0.034 720.7
0.675 0.957 2.203 -0.126 1.130 2.119 1.081 -0.049 722.3
0.725 0.967 2.200 -0.174 1.139 2.116 1.077 -0.068 724.6
0.775 0.978 2.195 -0.234 1.149 2.110 1.072 -0.092 727.5
0.825 0.990 2.187 -0.315 1.161 2.102 1.066 -0.123 731.2
0.875 1.003 2.175 -0.436 1.173 2.089 1.059 -0.170 738.0
0.925 1.025 2.161 -0.653 1.194 2.072 1.048 -0.252 762.1
0.975 1.174 2.245 -1.133 1.349 2.145 1.009 -0.399 944.9



F-6

Table F.5: Stress intensity factors calculated along the delamination front by means
of the three-dimensional M-integral for the largest domain of the fine mesh, as shown
in Fig. 4.8b, used to analyze specimens sp2.1 and sp11.2, separately, as well as their
normalized in-plane stress intensity factors with L̂ = 100 µm, their two phase angles and
their critical interface energy release rate.

sp2.1 ; ω=-5.86◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.219 2.251 1.180 1.394 2.147 0.995 0.410 973.2
0.075 1.053 2.156 0.691 1.221 2.066 1.037 0.265 772.5
0.125 1.023 2.169 0.470 1.192 2.081 1.050 0.183 742.9
0.175 1.006 2.181 0.345 1.176 2.094 1.059 0.135 733.7
0.225 0.992 2.188 0.260 1.163 2.103 1.066 0.102 728.7
0.275 0.979 2.193 0.196 1.151 2.108 1.071 0.077 725.1
0.325 0.970 2.196 0.143 1.141 2.112 1.075 0.056 722.3
0.375 0.962 2.198 0.098 1.134 2.115 1.079 0.038 720.4
0.425 0.957 2.199 0.057 1.129 2.116 1.081 0.022 719.1
0.475 0.955 2.200 0.019 1.127 2.117 1.082 0.007 718.5
0.525 0.955 2.200 -0.019 1.127 2.117 1.082 -0.007 718.5
0.575 0.957 2.199 -0.057 1.129 2.116 1.081 -0.022 719.1
0.625 0.962 2.198 -0.098 1.134 2.115 1.079 -0.038 720.4
0.675 0.970 2.196 -0.143 1.141 2.112 1.075 -0.056 722.3
0.725 0.979 2.193 -0.196 1.151 2.108 1.071 -0.077 725.1
0.775 0.992 2.188 -0.260 1.163 2.103 1.066 -0.102 728.7
0.825 1.006 2.181 -0.345 1.176 2.094 1.059 -0.135 733.7
0.875 1.023 2.169 -0.470 1.192 2.081 1.050 -0.183 742.9
0.925 1.053 2.156 -0.691 1.221 2.066 1.037 -0.265 772.5
0.975 1.219 2.251 -1.180 1.394 2.147 0.995 -0.410 973.2

sp11.2 ; ω=-5.90◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.156 2.264 1.145 1.333 2.165 1.019 0.402 953.2
0.075 1.002 2.176 0.671 1.172 2.090 1.060 0.258 767.1
0.125 0.979 2.190 0.456 1.150 2.105 1.071 0.178 741.9
0.175 0.967 2.201 0.334 1.139 2.117 1.077 0.130 734.7
0.225 0.956 2.209 0.251 1.129 2.126 1.083 0.098 731.0
0.275 0.946 2.214 0.189 1.119 2.132 1.087 0.074 728.1
0.325 0.938 2.217 0.138 1.111 2.135 1.091 0.054 725.9
0.375 0.932 2.219 0.094 1.105 2.137 1.094 0.037 724.3
0.425 0.927 2.220 0.055 1.101 2.139 1.095 0.021 723.3
0.475 0.925 2.220 0.018 1.099 2.140 1.096 0.007 722.8
0.525 0.925 2.220 -0.018 1.099 2.140 1.096 -0.007 722.8
0.575 0.927 2.220 -0.055 1.101 2.139 1.095 -0.021 723.3
0.625 0.932 2.219 -0.094 1.105 2.137 1.094 -0.037 724.3
0.675 0.938 2.217 -0.138 1.111 2.135 1.091 -0.054 725.9
0.725 0.946 2.214 -0.189 1.119 2.132 1.087 -0.074 728.1
0.775 0.956 2.209 -0.251 1.129 2.126 1.083 -0.098 731.0
0.825 0.967 2.201 -0.334 1.139 2.117 1.077 -0.130 734.7
0.875 0.979 2.190 -0.456 1.150 2.105 1.071 -0.178 741.9
0.925 1.002 2.176 -0.671 1.172 2.090 1.060 -0.258 767.1
0.975 1.156 2.264 -1.145 1.332 2.165 1.019 -0.402 953.1
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Table F.6: Stress intensity factors calculated along the delamination front by means of
the three-dimensional M-integral for the largest domain of the fine mesh, as shown in
Fig. 4.8b, used to analyze specimens sp12.2 and sp13.2, separately, as well as their
normalized in-plane stress intensity factors with L̂ = 100 µm, their two phase angles and
their critical interface energy release rate.

sp12.2 ; ω=-9.21◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 0.562 2.384 1.117 0.750 2.332 1.260 0.407 888.3
0.075 0.400 2.306 0.664 0.582 2.267 1.320 0.262 733.5
0.125 0.386 2.320 0.466 0.569 2.282 1.326 0.185 715.3
0.175 0.385 2.332 0.351 0.569 2.294 1.327 0.139 711.4
0.225 0.384 2.340 0.270 0.569 2.302 1.328 0.107 710.3
0.275 0.383 2.345 0.206 0.568 2.307 1.329 0.081 709.8
0.325 0.381 2.348 0.152 0.567 2.310 1.330 0.060 709.5
0.375 0.380 2.350 0.104 0.565 2.313 1.331 0.041 709.3
0.425 0.378 2.352 0.061 0.564 2.314 1.332 0.024 709.3
0.475 0.378 2.352 0.020 0.564 2.315 1.332 0.008 709.3
0.525 0.378 2.352 -0.020 0.564 2.315 1.332 -0.008 709.3
0.575 0.378 2.352 -0.061 0.564 2.314 1.332 -0.024 709.3
0.625 0.380 2.350 -0.104 0.565 2.313 1.331 -0.041 709.3
0.675 0.381 2.348 -0.152 0.567 2.310 1.330 -0.060 709.5
0.725 0.383 2.345 -0.206 0.568 2.307 1.329 -0.081 709.8
0.775 0.384 2.340 -0.270 0.569 2.302 1.328 -0.107 710.3
0.825 0.385 2.332 -0.351 0.569 2.294 1.327 -0.139 711.4
0.875 0.386 2.320 -0.466 0.569 2.282 1.326 -0.185 715.3
0.925 0.400 2.306 -0.664 0.582 2.267 1.320 -0.262 733.5
0.975 0.562 2.384 -1.117 0.750 2.332 1.260 -0.407 888.3

sp13.2 ; ω=-9.45◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 0.591 2.562 1.201 0.793 2.507 1.264 0.407 1023.8
0.075 0.411 2.477 0.715 0.607 2.436 1.327 0.263 844.2
0.125 0.394 2.491 0.499 0.591 2.452 1.334 0.185 822.4
0.175 0.393 2.504 0.374 0.591 2.465 1.336 0.138 818.0
0.225 0.391 2.513 0.286 0.590 2.474 1.337 0.106 817.0
0.275 0.389 2.518 0.218 0.588 2.479 1.338 0.080 816.5
0.325 0.387 2.522 0.160 0.586 2.483 1.339 0.059 816.3
0.375 0.385 2.525 0.110 0.585 2.486 1.340 0.041 816.2
0.425 0.383 2.526 0.064 0.583 2.488 1.340 0.024 816.1
0.475 0.383 2.527 0.021 0.583 2.488 1.341 0.008 816.1
0.525 0.383 2.527 -0.021 0.583 2.488 1.341 -0.008 816.1
0.575 0.383 2.526 -0.064 0.583 2.488 1.340 -0.024 816.1
0.625 0.385 2.525 -0.110 0.585 2.486 1.340 -0.041 816.2
0.675 0.387 2.522 -0.160 0.586 2.483 1.339 -0.059 816.3
0.725 0.389 2.518 -0.218 0.588 2.479 1.338 -0.080 816.5
0.775 0.391 2.513 -0.286 0.590 2.474 1.337 -0.106 817.0
0.825 0.393 2.504 -0.374 0.591 2.465 1.336 -0.138 818.0
0.875 0.394 2.491 -0.499 0.591 2.452 1.334 -0.185 822.4
0.925 0.411 2.477 -0.715 0.607 2.436 1.327 -0.263 844.2
0.975 0.591 2.562 -1.201 0.793 2.507 1.264 -0.407 1023.8
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Table F.7: Stress intensity factors calculated along the delamination front by means
of the three-dimensional M-integral for the largest domain of the fine mesh, as shown
in Fig. 4.8b, used to analyze specimens sp3.2 and sp8.1, separately, as well as their
normalized in-plane stress intensity factors with L̂ = 100 µm, their two phase angles and
their critical interface energy release rate.

sp3.2 ; ω=-9.67◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 0.602 2.565 1.208 0.804 2.508 1.261 0.408 1029.2
0.075 0.421 2.479 0.715 0.617 2.437 1.323 0.262 846.6
0.125 0.403 2.493 0.497 0.600 2.453 1.331 0.183 824.3
0.175 0.399 2.506 0.371 0.597 2.466 1.333 0.137 819.7
0.225 0.396 2.515 0.283 0.595 2.475 1.335 0.104 818.5
0.275 0.393 2.520 0.215 0.592 2.481 1.336 0.079 817.9
0.325 0.390 2.524 0.158 0.589 2.485 1.338 0.058 817.6
0.375 0.387 2.526 0.108 0.587 2.488 1.339 0.040 817.4
0.425 0.385 2.528 0.063 0.585 2.489 1.340 0.023 817.3
0.475 0.384 2.529 0.021 0.584 2.490 1.340 0.008 817.3
0.525 0.384 2.529 -0.021 0.584 2.490 1.340 -0.008 817.3
0.575 0.385 2.528 -0.063 0.585 2.489 1.340 -0.023 817.3
0.625 0.387 2.526 -0.108 0.587 2.488 1.339 -0.040 817.4
0.675 0.390 2.524 -0.158 0.589 2.485 1.338 -0.058 817.6
0.725 0.393 2.520 -0.215 0.592 2.481 1.336 -0.079 817.9
0.775 0.396 2.515 -0.283 0.595 2.475 1.335 -0.104 818.5
0.825 0.399 2.506 -0.371 0.597 2.466 1.333 -0.137 819.7
0.875 0.403 2.493 -0.497 0.600 2.453 1.331 -0.183 824.3
0.925 0.421 2.479 -0.715 0.617 2.437 1.323 -0.262 846.6
0.975 0.602 2.565 -1.208 0.804 2.508 1.261 -0.408 1029.2

sp8.1 ; ω=-10.10◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 0.560 2.716 1.269 0.775 2.663 1.288 0.407 1139.7
0.075 0.368 2.627 0.752 0.576 2.589 1.352 0.261 941.8
0.125 0.349 2.642 0.523 0.559 2.606 1.360 0.183 917.8
0.175 0.346 2.655 0.392 0.556 2.619 1.361 0.137 912.7
0.225 0.344 2.664 0.299 0.555 2.628 1.363 0.105 911.4
0.275 0.341 2.670 0.227 0.552 2.634 1.364 0.079 910.7
0.325 0.338 2.674 0.167 0.549 2.638 1.365 0.058 910.4
0.375 0.335 2.676 0.115 0.547 2.641 1.366 0.040 910.2
0.425 0.334 2.678 0.067 0.546 2.643 1.367 0.023 910.1
0.475 0.333 2.678 0.022 0.545 2.643 1.368 0.008 910.1
0.525 0.333 2.678 -0.022 0.545 2.643 1.368 -0.008 910.1
0.575 0.334 2.678 -0.067 0.546 2.643 1.367 -0.023 910.1
0.625 0.335 2.676 -0.115 0.547 2.641 1.366 -0.040 910.2
0.675 0.338 2.674 -0.167 0.549 2.638 1.365 -0.058 910.4
0.725 0.341 2.670 -0.227 0.552 2.634 1.364 -0.079 910.7
0.775 0.344 2.664 -0.299 0.555 2.628 1.363 -0.105 911.4
0.825 0.346 2.655 -0.392 0.556 2.619 1.361 -0.137 912.7
0.875 0.349 2.642 -0.523 0.559 2.606 1.360 -0.183 917.8
0.925 0.368 2.627 -0.752 0.576 2.589 1.352 -0.261 941.8
0.975 0.560 2.716 -1.269 0.775 2.663 1.288 -0.407 1139.7
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Table F.8: Stress intensity factors calculated along the delamination front by means
of the three-dimensional M-integral for the largest domain of the fine mesh, as shown
in Fig. 4.8b, used to analyze specimens sp11.1 and sp4.2, separately, as well as their
normalized in-plane stress intensity factors with L̂ = 100 µm, their two phase angles and
their critical interface energy release rate.

sp11.1 ; ω=-10.11◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 0.566 2.535 1.198 0.766 2.482 1.271 0.410 1002.4
0.075 0.387 2.448 0.717 0.581 2.409 1.334 0.267 824.4
0.125 0.371 2.461 0.506 0.566 2.423 1.342 0.190 802.2
0.175 0.370 2.473 0.383 0.565 2.435 1.343 0.144 797.2
0.225 0.369 2.481 0.296 0.566 2.444 1.343 0.111 795.7
0.275 0.368 2.486 0.226 0.565 2.449 1.344 0.085 795.0
0.325 0.367 2.490 0.167 0.564 2.453 1.345 0.063 794.6
0.375 0.366 2.493 0.115 0.563 2.456 1.345 0.043 794.4
0.425 0.365 2.494 0.068 0.563 2.457 1.346 0.025 794.3
0.475 0.365 2.495 0.022 0.562 2.458 1.346 0.008 794.3
0.525 0.365 2.495 -0.022 0.562 2.458 1.346 -0.008 794.3
0.575 0.365 2.494 -0.068 0.563 2.457 1.346 -0.025 794.3
0.625 0.366 2.493 -0.115 0.563 2.456 1.345 -0.043 794.4
0.675 0.367 2.490 -0.167 0.564 2.453 1.345 -0.063 794.6
0.725 0.368 2.486 -0.226 0.565 2.449 1.344 -0.085 795.0
0.775 0.369 2.481 -0.296 0.566 2.444 1.343 -0.111 795.7
0.825 0.370 2.473 -0.383 0.565 2.435 1.343 -0.144 797.2
0.875 0.371 2.461 -0.506 0.566 2.423 1.342 -0.190 802.2
0.925 0.387 2.448 -0.717 0.581 2.409 1.334 -0.267 824.4
0.975 0.566 2.535 -1.198 0.766 2.482 1.271 -0.410 1002.4

sp4.2 ; ω=-12.46◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 0.239 2.781 1.272 0.460 2.753 1.405 0.406 1153.3
0.075 0.032 2.692 0.769 0.246 2.681 1.479 0.263 971.4
0.125 0.015 2.707 0.548 0.230 2.697 1.486 0.189 948.8
0.175 0.018 2.720 0.419 0.234 2.710 1.485 0.144 943.7
0.225 0.022 2.729 0.326 0.239 2.719 1.483 0.112 942.5
0.275 0.026 2.736 0.251 0.243 2.725 1.482 0.086 942.0
0.325 0.028 2.740 0.186 0.246 2.729 1.481 0.064 941.9
0.375 0.030 2.743 0.129 0.248 2.732 1.480 0.044 941.9
0.425 0.030 2.745 0.076 0.249 2.734 1.480 0.026 942.0
0.475 0.031 2.746 0.025 0.249 2.735 1.480 0.009 942.1
0.525 0.031 2.746 -0.025 0.249 2.735 1.480 -0.009 942.1
0.575 0.030 2.745 -0.076 0.249 2.734 1.480 -0.026 942.0
0.625 0.030 2.743 -0.129 0.248 2.732 1.480 -0.044 941.9
0.675 0.028 2.740 -0.186 0.246 2.729 1.481 -0.064 941.9
0.725 0.026 2.736 -0.251 0.243 2.725 1.482 -0.086 942.0
0.775 0.022 2.729 -0.326 0.239 2.719 1.483 -0.112 942.5
0.825 0.018 2.720 -0.419 0.234 2.710 1.485 -0.144 943.7
0.875 0.015 2.707 -0.548 0.230 2.697 1.486 -0.189 948.8
0.925 0.032 2.692 -0.769 0.246 2.681 1.479 -0.263 971.4
0.975 0.239 2.781 -1.272 0.460 2.753 1.405 -0.406 1153.3
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Table F.9: Stress intensity factors calculated along the delamination front by means
of the three-dimensional M-integral for the largest domain of the fine mesh, as shown
in Fig. 4.8b, used to analyze specimens sp5.1 and sp2.2, separately, as well as their
normalized in-plane stress intensity factors with L̂ = 100 µm, their two phase angles and
their critical interface energy release rate.

sp5.1 ; ω=-12.94◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 0.299 2.744 1.256 0.517 2.712 1.382 0.406 1127.5
0.075 0.098 2.659 0.750 0.309 2.643 1.454 0.260 947.0
0.125 0.080 2.674 0.528 0.293 2.660 1.461 0.184 925.4
0.175 0.080 2.688 0.399 0.294 2.673 1.461 0.139 920.8
0.225 0.081 2.697 0.308 0.295 2.682 1.461 0.107 919.8
0.275 0.081 2.703 0.235 0.296 2.688 1.461 0.082 919.5
0.325 0.081 2.707 0.174 0.296 2.692 1.461 0.061 919.4
0.375 0.080 2.709 0.120 0.296 2.694 1.461 0.042 919.5
0.425 0.080 2.711 0.070 0.296 2.696 1.462 0.024 919.6
0.475 0.080 2.712 0.023 0.295 2.697 1.462 0.008 919.6
0.525 0.080 2.712 -0.023 0.295 2.697 1.462 -0.008 919.6
0.575 0.080 2.711 -0.070 0.296 2.696 1.462 -0.024 919.6
0.625 0.080 2.709 -0.120 0.296 2.694 1.461 -0.042 919.5
0.675 0.081 2.707 -0.174 0.296 2.692 1.461 -0.061 919.4
0.725 0.081 2.703 -0.235 0.296 2.688 1.461 -0.082 919.5
0.775 0.081 2.697 -0.308 0.295 2.682 1.461 -0.107 919.8
0.825 0.080 2.688 -0.399 0.294 2.673 1.461 -0.139 920.8
0.875 0.080 2.674 -0.528 0.293 2.660 1.461 -0.184 925.4
0.925 0.098 2.659 -0.750 0.309 2.643 1.454 -0.260 947.0
0.975 0.299 2.744 -1.256 0.517 2.712 1.382 -0.406 1127.5

sp2.2 ; ω=-13.07◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 0.246 2.751 1.266 0.464 2.723 1.402 0.408 1131.4
0.075 0.043 2.661 0.762 0.254 2.649 1.475 0.264 949.4
0.125 0.025 2.674 0.542 0.238 2.664 1.482 0.189 926.3
0.175 0.027 2.687 0.413 0.241 2.676 1.481 0.144 920.9
0.225 0.031 2.696 0.320 0.245 2.685 1.480 0.112 919.4
0.275 0.033 2.702 0.246 0.248 2.691 1.479 0.086 918.8
0.325 0.035 2.706 0.183 0.250 2.695 1.478 0.064 918.6
0.375 0.036 2.709 0.126 0.251 2.697 1.478 0.044 918.6
0.425 0.036 2.711 0.074 0.252 2.699 1.478 0.026 918.6
0.475 0.037 2.711 0.024 0.252 2.700 1.478 0.009 918.6
0.525 0.037 2.711 -0.024 0.252 2.700 1.478 -0.009 918.6
0.575 0.036 2.711 -0.074 0.252 2.699 1.478 -0.026 918.6
0.625 0.036 2.709 -0.126 0.251 2.697 1.478 -0.044 918.6
0.675 0.035 2.706 -0.183 0.250 2.695 1.478 -0.064 918.6
0.725 0.033 2.702 -0.246 0.248 2.691 1.479 -0.086 918.8
0.775 0.031 2.696 -0.320 0.245 2.685 1.480 -0.112 919.4
0.825 0.027 2.687 -0.413 0.241 2.676 1.481 -0.144 920.9
0.875 0.025 2.674 -0.542 0.238 2.664 1.482 -0.189 926.3
0.925 0.043 2.661 -0.762 0.254 2.649 1.475 -0.264 949.4
0.975 0.246 2.751 -1.266 0.464 2.723 1.402 -0.408 1131.4
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Table F.10: Stress intensity factors calculated along the delamination front by means
of the three-dimensional M-integral for the largest domain of the fine mesh, as shown
in Fig. 4.8b, used to analyze specimens sp4.1 and sp6.2, separately, as well as their
normalized in-plane stress intensity factors with L̂ = 100 µm, their two phase angles and
their critical interface energy release rate.

sp4.1 ; ω=-13.20◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 0.198 2.854 1.315 0.425 2.829 1.422 0.409 1214.6
0.075 -0.018 2.760 0.795 0.202 2.753 1.498 0.266 1022.1
0.125 -0.035 2.774 0.566 0.185 2.768 1.504 0.190 997.4
0.175 -0.032 2.788 0.432 0.190 2.782 1.503 0.145 991.9
0.225 -0.026 2.798 0.336 0.196 2.791 1.501 0.113 990.7
0.275 -0.022 2.805 0.258 0.201 2.798 1.499 0.087 990.3
0.325 -0.019 2.809 0.192 0.205 2.802 1.498 0.064 990.2
0.375 -0.017 2.813 0.133 0.207 2.805 1.497 0.045 990.3
0.425 -0.016 2.815 0.078 0.208 2.807 1.497 0.026 990.4
0.475 -0.015 2.816 0.026 0.209 2.808 1.497 0.009 990.4
0.525 -0.015 2.816 -0.026 0.209 2.808 1.497 -0.009 990.4
0.575 -0.016 2.815 -0.078 0.208 2.807 1.497 -0.026 990.4
0.625 -0.017 2.813 -0.133 0.207 2.805 1.497 -0.045 990.3
0.675 -0.019 2.809 -0.192 0.205 2.802 1.498 -0.064 990.2
0.725 -0.022 2.805 -0.258 0.201 2.798 1.499 -0.087 990.3
0.775 -0.026 2.798 -0.336 0.196 2.791 1.501 -0.113 990.7
0.825 -0.032 2.788 -0.432 0.190 2.782 1.503 -0.145 991.9
0.875 -0.035 2.774 -0.566 0.185 2.768 1.504 -0.190 997.4
0.925 -0.018 2.760 -0.795 0.202 2.753 1.498 -0.266 1022.1
0.975 0.198 2.854 -1.315 0.425 2.829 1.422 -0.409 1214.6

sp6.2 ; ω=-13.42◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 0.224 2.899 1.332 0.454 2.872 1.414 0.408 1253.7
0.075 0.009 2.806 0.801 0.233 2.796 1.488 0.263 1054.8
0.125 0.000 2.821 0.568 0.216 2.813 1.494 0.188 1029.9
0.175 0.000 2.834 0.432 0.220 2.826 1.493 0.143 1024.4
0.225 0.000 2.844 0.335 0.225 2.835 1.492 0.111 1023.0
0.275 0.001 2.851 0.257 0.228 2.842 1.491 0.085 1022.6
0.325 0.003 2.855 0.191 0.230 2.846 1.490 0.063 1022.5
0.375 0.004 2.858 0.132 0.232 2.849 1.490 0.043 1022.6
0.425 0.005 2.860 0.077 0.233 2.851 1.489 0.025 1022.7
0.475 0.005 2.861 0.025 0.233 2.852 1.489 0.008 1022.8
0.525 0.005 2.861 -0.025 0.233 2.852 1.489 -0.008 1022.8
0.575 0.005 2.860 -0.077 0.233 2.851 1.489 -0.025 1022.7
0.625 0.004 2.858 -0.132 0.232 2.849 1.490 -0.043 1022.6
0.675 0.003 2.855 -0.191 0.230 2.846 1.490 -0.063 1022.5
0.725 0.001 2.851 -0.257 0.228 2.842 1.491 -0.085 1022.6
0.775 0.000 2.844 -0.335 0.225 2.835 1.492 -0.111 1023.0
0.825 0.000 2.834 -0.432 0.220 2.826 1.493 -0.143 1024.4
0.875 0.000 2.821 -0.568 0.216 2.813 1.494 -0.188 1029.9
0.925 0.009 2.806 -0.801 0.233 2.796 1.488 -0.263 1054.8
0.975 0.224 2.899 -1.332 0.454 2.872 1.414 -0.408 1253.7
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Table F.11: Stress intensity factors calculated along the delamination front by means
of the three-dimensional M-integral for the largest domain of the fine mesh, as shown
in Fig. 4.8b, used to analyze specimens sp10.1 and sp14.2, separately, as well as their
normalized in-plane stress intensity factors with L̂ = 100 µm, their two phase angles and
their critical interface energy release rate.

sp10.1 ; ω=1.72◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.238 -1.019 -0.174 1.153 -1.114 -0.768 -0.102 324.3
0.075 1.335 -1.011 -0.111 1.250 -1.114 -0.728 -0.063 351.6
0.125 1.338 -1.003 -0.096 1.254 -1.107 -0.723 -0.054 350.4
0.175 1.326 -0.997 -0.084 1.242 -1.099 -0.725 -0.048 344.5
0.225 1.311 -0.993 -0.071 1.228 -1.094 -0.728 -0.041 338.4
0.275 1.298 -0.989 -0.057 1.215 -1.089 -0.731 -0.033 333.2
0.325 1.288 -0.987 -0.044 1.205 -1.086 -0.734 -0.026 329.0
0.375 1.280 -0.985 -0.031 1.197 -1.084 -0.736 -0.018 325.9
0.425 1.274 -0.984 -0.019 1.192 -1.082 -0.737 -0.011 323.9
0.475 1.272 -0.984 -0.006 1.189 -1.082 -0.738 -0.004 322.9
0.525 1.272 -0.984 0.006 1.189 -1.082 -0.738 0.004 322.9
0.575 1.274 -0.984 0.019 1.192 -1.082 -0.737 0.011 323.9
0.625 1.280 -0.985 0.031 1.197 -1.084 -0.736 0.018 325.9
0.675 1.288 -0.987 0.044 1.205 -1.086 -0.734 0.026 329.0
0.725 1.298 -0.989 0.057 1.215 -1.089 -0.731 0.033 333.2
0.775 1.311 -0.993 0.071 1.228 -1.094 -0.728 0.041 338.4
0.825 1.326 -0.997 0.084 1.242 -1.099 -0.725 0.048 344.5
0.875 1.338 -1.003 0.096 1.254 -1.107 -0.723 0.054 350.4
0.925 1.335 -1.011 0.111 1.250 -1.114 -0.728 0.063 351.6
0.975 1.238 -1.019 0.174 1.153 -1.114 -0.768 0.102 324.3

sp14.2 ; ω=2.50◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.225 -0.549 0.036 1.178 -0.645 -0.501 0.025 225.4
0.075 1.285 -0.568 0.031 1.235 -0.668 -0.496 0.021 246.5
0.125 1.285 -0.565 0.016 1.236 -0.666 -0.494 0.011 246.2
0.175 1.274 -0.562 0.008 1.225 -0.661 -0.495 0.006 242.2
0.225 1.261 -0.559 0.004 1.213 -0.657 -0.497 0.003 237.7
0.275 1.249 -0.557 0.002 1.201 -0.655 -0.499 0.002 233.7
0.325 1.240 -0.556 0.001 1.191 -0.652 -0.501 0.001 230.5
0.375 1.232 -0.555 0.001 1.184 -0.651 -0.503 0.001 228.1
0.425 1.227 -0.554 0.000 1.179 -0.650 -0.504 0.000 226.6
0.475 1.225 -0.554 0.000 1.177 -0.649 -0.504 0.000 225.8
0.525 1.225 -0.554 0.000 1.177 -0.649 -0.504 0.000 225.8
0.575 1.227 -0.554 0.000 1.179 -0.650 -0.504 0.000 226.6
0.625 1.232 -0.555 -0.001 1.184 -0.651 -0.503 -0.001 228.1
0.675 1.240 -0.556 -0.001 1.191 -0.652 -0.501 -0.001 230.5
0.725 1.249 -0.557 -0.002 1.201 -0.655 -0.499 -0.002 233.7
0.775 1.261 -0.559 -0.004 1.213 -0.657 -0.497 -0.003 237.7
0.825 1.274 -0.562 -0.008 1.225 -0.661 -0.495 -0.006 242.2
0.875 1.285 -0.565 -0.016 1.236 -0.666 -0.494 -0.011 246.2
0.925 1.285 -0.568 -0.031 1.235 -0.668 -0.496 -0.021 246.5
0.975 1.225 -0.549 -0.036 1.178 -0.645 -0.501 -0.025 225.4



F-13

Table F.12: Stress intensity factors calculated along the delamination front by means
of the three-dimensional M-integral for the largest domain of the fine mesh, as shown
in Fig. 4.8b, used to analyze specimens sp10.2 and sp16.1, separately, as well as their
normalized in-plane stress intensity factors with L̂ = 100 µm, their two phase angles and
their critical interface energy release rate.

sp10.2 ; ω=2.69◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.119 -0.945 -0.153 1.040 -1.031 -0.781 -0.098 270.7
0.075 1.207 -0.942 -0.092 1.128 -1.035 -0.742 -0.056 294.0
0.125 1.210 -0.938 -0.077 1.132 -1.031 -0.739 -0.047 293.4
0.175 1.199 -0.933 -0.066 1.121 -1.026 -0.741 -0.041 288.8
0.225 1.186 -0.930 -0.054 1.108 -1.021 -0.745 -0.034 283.9
0.275 1.174 -0.927 -0.044 1.096 -1.018 -0.748 -0.028 279.7
0.325 1.164 -0.926 -0.033 1.086 -1.015 -0.752 -0.021 276.3
0.375 1.156 -0.924 -0.023 1.079 -1.013 -0.754 -0.015 273.9
0.425 1.152 -0.924 -0.014 1.074 -1.012 -0.756 -0.009 272.2
0.475 1.149 -0.923 -0.005 1.072 -1.012 -0.756 -0.003 271.4
0.525 1.149 -0.923 0.005 1.072 -1.012 -0.756 0.003 271.4
0.575 1.152 -0.924 0.014 1.074 -1.012 -0.756 0.009 272.2
0.625 1.156 -0.924 0.023 1.079 -1.013 -0.754 0.015 273.9
0.675 1.164 -0.926 0.033 1.086 -1.015 -0.752 0.021 276.3
0.725 1.174 -0.927 0.044 1.096 -1.018 -0.748 0.028 279.7
0.775 1.186 -0.930 0.054 1.108 -1.021 -0.745 0.034 283.9
0.825 1.199 -0.933 0.066 1.121 -1.026 -0.741 0.041 288.8
0.875 1.210 -0.938 0.077 1.132 -1.031 -0.739 0.047 293.4
0.925 1.207 -0.942 0.092 1.128 -1.035 -0.742 0.056 294.0
0.975 1.119 -0.945 0.153 1.040 -1.031 -0.781 0.098 270.7

sp16.1 ; ω=2.74◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.117 -0.940 -0.143 1.038 -1.026 -0.779 -0.092 268.4
0.075 1.208 -0.939 -0.086 1.130 -1.032 -0.740 -0.053 293.3
0.125 1.213 -0.934 -0.073 1.135 -1.028 -0.736 -0.045 293.5
0.175 1.203 -0.930 -0.063 1.126 -1.022 -0.737 -0.039 289.3
0.225 1.191 -0.926 -0.053 1.113 -1.018 -0.741 -0.033 284.7
0.275 1.179 -0.924 -0.043 1.102 -1.015 -0.744 -0.027 280.6
0.325 1.170 -0.922 -0.033 1.093 -1.012 -0.747 -0.021 277.3
0.375 1.162 -0.921 -0.023 1.085 -1.011 -0.750 -0.015 274.8
0.425 1.158 -0.920 -0.014 1.081 -1.009 -0.751 -0.009 273.2
0.475 1.155 -0.920 -0.005 1.078 -1.009 -0.752 -0.003 272.4
0.525 1.155 -0.920 0.005 1.078 -1.009 -0.752 0.003 272.4
0.575 1.158 -0.920 0.014 1.081 -1.009 -0.751 0.009 273.2
0.625 1.162 -0.921 0.023 1.085 -1.011 -0.750 0.015 274.8
0.675 1.170 -0.922 0.033 1.093 -1.012 -0.747 0.021 277.3
0.725 1.179 -0.924 0.043 1.102 -1.015 -0.744 0.027 280.6
0.775 1.191 -0.926 0.053 1.113 -1.018 -0.741 0.033 284.7
0.825 1.203 -0.930 0.063 1.126 -1.022 -0.737 0.039 289.3
0.875 1.213 -0.934 0.073 1.135 -1.028 -0.736 0.045 293.5
0.925 1.208 -0.939 0.086 1.130 -1.032 -0.740 0.053 293.3
0.975 1.117 -0.940 0.143 1.038 -1.026 -0.779 0.092 268.4



F-14

Table F.13: Stress intensity factors calculated along the delamination front by means
of the three-dimensional M-integral for the largest domain of the fine mesh, as shown
in Fig. 4.8b, used to analyze specimens sp15.1 and sp9.2, separately, as well as their
normalized in-plane stress intensity factors with L̂ = 100 µm, their two phase angles and
their critical interface energy release rate.

sp15.1 ; ω=4.03◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.081 -1.611 -0.413 0.950 -1.692 -1.059 -0.198 489.3
0.075 1.243 -1.590 -0.242 1.112 -1.684 -0.987 -0.113 515.2
0.125 1.263 -1.586 -0.181 1.133 -1.682 -0.978 -0.084 517.3
0.175 1.259 -1.583 -0.144 1.129 -1.678 -0.979 -0.067 513.3
0.225 1.249 -1.580 -0.115 1.119 -1.675 -0.982 -0.054 508.2
0.275 1.239 -1.578 -0.089 1.109 -1.671 -0.985 -0.042 503.6
0.325 1.230 -1.576 -0.067 1.100 -1.669 -0.988 -0.032 499.8
0.375 1.223 -1.575 -0.046 1.094 -1.667 -0.990 -0.022 496.9
0.425 1.218 -1.574 -0.027 1.089 -1.666 -0.992 -0.013 495.0
0.475 1.216 -1.574 -0.009 1.087 -1.665 -0.993 -0.004 494.1
0.525 1.216 -1.574 0.009 1.087 -1.665 -0.993 0.004 494.1
0.575 1.218 -1.574 0.027 1.089 -1.666 -0.992 0.013 495.0
0.625 1.223 -1.575 0.046 1.094 -1.667 -0.990 0.022 496.9
0.675 1.230 -1.576 0.067 1.100 -1.669 -0.988 0.032 499.8
0.725 1.239 -1.578 0.089 1.109 -1.671 -0.985 0.042 503.6
0.775 1.249 -1.580 0.115 1.119 -1.675 -0.982 0.054 508.2
0.825 1.259 -1.583 0.144 1.129 -1.678 -0.979 0.067 513.3
0.875 1.263 -1.586 0.181 1.133 -1.682 -0.978 0.084 517.3
0.925 1.243 -1.590 0.242 1.112 -1.684 -0.987 0.113 515.2
0.975 1.081 -1.611 0.413 0.950 -1.692 -1.059 0.198 489.3

sp9.2 ; ω=4.30◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.116 -1.404 -0.315 1.001 -1.488 -0.979 -0.164 412.8
0.075 1.258 -1.395 -0.174 1.143 -1.491 -0.917 -0.087 444.1
0.125 1.276 -1.394 -0.127 1.161 -1.491 -0.909 -0.063 447.7
0.175 1.271 -1.391 -0.099 1.156 -1.488 -0.910 -0.050 444.7
0.225 1.261 -1.389 -0.078 1.146 -1.485 -0.913 -0.039 440.4
0.275 1.251 -1.388 -0.060 1.136 -1.483 -0.917 -0.030 436.4
0.325 1.242 -1.386 -0.044 1.128 -1.481 -0.920 -0.022 433.0
0.375 1.235 -1.385 -0.031 1.121 -1.479 -0.922 -0.016 430.4
0.425 1.230 -1.385 -0.018 1.116 -1.478 -0.924 -0.009 428.7
0.475 1.228 -1.384 -0.006 1.114 -1.478 -0.925 -0.003 427.8
0.525 1.228 -1.384 0.006 1.114 -1.478 -0.925 0.003 427.8
0.575 1.230 -1.385 0.018 1.116 -1.478 -0.924 0.009 428.7
0.625 1.235 -1.385 0.031 1.121 -1.479 -0.922 0.016 430.4
0.675 1.242 -1.386 0.044 1.128 -1.481 -0.920 0.022 433.0
0.725 1.251 -1.388 0.060 1.136 -1.483 -0.917 0.030 436.4
0.775 1.261 -1.389 0.078 1.146 -1.485 -0.913 0.039 440.4
0.825 1.271 -1.391 0.099 1.156 -1.488 -0.910 0.050 444.7
0.875 1.276 -1.394 0.127 1.161 -1.491 -0.909 0.063 447.7
0.925 1.258 -1.395 0.174 1.143 -1.491 -0.917 0.087 444.1
0.975 1.116 -1.404 0.315 1.001 -1.488 -0.979 0.164 412.8
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Table F.14: Stress intensity factors calculated along the delamination front by means
of the three-dimensional M-integral for the largest domain of the fine mesh, as shown
in Fig. 4.8b, used to analyze specimens sp15.2 and sp7.1, separately, as well as their
normalized in-plane stress intensity factors with L̂ = 100 µm, their two phase angles and
their critical interface energy release rate.

sp15.2 ; ω=4.67◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 1.196 -1.911 -0.510 1.040 -2.000 -1.091 -0.210 663.6
0.075 1.369 -1.880 -0.310 1.215 -1.983 -1.021 -0.125 686.0
0.125 1.382 -1.874 -0.236 1.229 -1.978 -1.015 -0.095 683.9
0.175 1.372 -1.870 -0.190 1.218 -1.973 -1.018 -0.077 675.9
0.225 1.357 -1.867 -0.153 1.204 -1.969 -1.022 -0.062 667.9
0.275 1.343 -1.864 -0.120 1.190 -1.965 -1.026 -0.049 661.0
0.325 1.331 -1.862 -0.091 1.179 -1.962 -1.030 -0.037 655.5
0.375 1.322 -1.861 -0.063 1.170 -1.960 -1.033 -0.026 651.5
0.425 1.317 -1.860 -0.037 1.164 -1.959 -1.035 -0.016 648.9
0.475 1.314 -1.860 -0.012 1.162 -1.958 -1.035 -0.005 647.6
0.525 1.314 -1.860 0.012 1.162 -1.958 -1.035 0.005 647.6
0.575 1.317 -1.860 0.037 1.164 -1.959 -1.035 0.016 648.9
0.625 1.322 -1.861 0.063 1.170 -1.960 -1.033 0.026 651.5
0.675 1.331 -1.862 0.091 1.179 -1.962 -1.030 0.037 655.5
0.725 1.343 -1.864 0.120 1.190 -1.965 -1.026 0.049 661.0
0.775 1.357 -1.867 0.153 1.204 -1.969 -1.022 0.062 667.9
0.825 1.372 -1.870 0.190 1.218 -1.973 -1.018 0.077 675.9
0.875 1.382 -1.874 0.236 1.229 -1.978 -1.015 0.095 683.9
0.925 1.369 -1.880 0.310 1.215 -1.983 -1.021 0.125 686.0
0.975 1.196 -1.911 0.510 1.040 -2.000 -1.091 0.210 663.6

sp7.1 ; ω=5.35◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 0.896 -2.467 -0.799 0.697 -2.530 -1.302 -0.280 931.4
0.075 1.138 -2.409 -0.487 0.943 -2.492 -1.209 -0.171 913.4
0.125 1.176 -2.405 -0.361 0.981 -2.491 -1.196 -0.126 909.9
0.175 1.179 -2.402 -0.283 0.984 -2.488 -1.194 -0.100 903.6
0.225 1.173 -2.400 -0.224 0.979 -2.486 -1.196 -0.079 897.2
0.275 1.165 -2.398 -0.174 0.971 -2.483 -1.198 -0.062 891.5
0.325 1.158 -2.396 -0.131 0.964 -2.481 -1.200 -0.046 886.9
0.375 1.152 -2.395 -0.091 0.958 -2.479 -1.202 -0.032 883.5
0.425 1.148 -2.394 -0.054 0.954 -2.478 -1.203 -0.019 881.2
0.475 1.146 -2.394 -0.018 0.952 -2.478 -1.204 -0.006 880.1
0.525 1.146 -2.394 0.018 0.952 -2.478 -1.204 0.006 880.1
0.575 1.148 -2.394 0.054 0.954 -2.478 -1.203 0.019 881.2
0.625 1.152 -2.395 0.091 0.958 -2.479 -1.202 0.032 883.5
0.675 1.158 -2.396 0.131 0.964 -2.481 -1.200 0.046 886.9
0.725 1.165 -2.398 0.174 0.971 -2.483 -1.198 0.062 891.5
0.775 1.173 -2.400 0.224 0.979 -2.486 -1.196 0.079 897.2
0.825 1.179 -2.402 0.283 0.984 -2.488 -1.194 0.100 903.6
0.875 1.176 -2.405 0.361 0.981 -2.491 -1.196 0.126 909.9
0.925 1.138 -2.409 0.487 0.943 -2.492 -1.209 0.171 913.4
0.975 0.896 -2.467 0.799 0.697 -2.530 -1.302 0.280 931.4
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Table F.15: Stress intensity factors calculated along the delamination front by means
of the three-dimensional M-integral for the largest domain of the fine mesh, as shown
in Fig. 4.8b, used to analyze specimens sp6.1 and sp5.2, separately, as well as their
normalized in-plane stress intensity factors with L̂ = 100 µm, their two phase angles and
their critical interface energy release rate.

sp6.1 ; ω=9.89◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 0.437 -2.635 -0.988 0.226 -2.662 -1.486 -0.336 1000.0
0.075 0.699 -2.561 -0.613 0.493 -2.609 -1.384 -0.214 922.4
0.125 0.749 -2.562 -0.453 0.543 -2.614 -1.366 -0.159 913.2
0.175 0.764 -2.565 -0.356 0.557 -2.618 -1.361 -0.125 908.9
0.225 0.768 -2.567 -0.281 0.561 -2.620 -1.360 -0.099 905.8
0.275 0.769 -2.569 -0.219 0.562 -2.622 -1.360 -0.077 903.4
0.325 0.768 -2.570 -0.164 0.561 -2.623 -1.360 -0.058 901.5
0.375 0.767 -2.570 -0.114 0.560 -2.623 -1.360 -0.040 900.2
0.425 0.766 -2.571 -0.067 0.559 -2.623 -1.361 -0.024 899.3
0.475 0.766 -2.571 -0.022 0.559 -2.623 -1.361 -0.008 898.9
0.525 0.766 -2.571 0.022 0.559 -2.623 -1.361 0.008 898.9
0.575 0.766 -2.571 0.067 0.559 -2.623 -1.361 0.024 899.3
0.625 0.767 -2.570 0.114 0.560 -2.623 -1.360 0.040 900.2
0.675 0.768 -2.570 0.164 0.561 -2.623 -1.360 0.058 901.5
0.725 0.769 -2.569 0.219 0.562 -2.622 -1.360 0.077 903.4
0.775 0.768 -2.567 0.281 0.561 -2.620 -1.360 0.099 905.8
0.825 0.764 -2.565 0.356 0.557 -2.618 -1.361 0.125 908.9
0.875 0.749 -2.562 0.453 0.543 -2.614 -1.366 0.159 913.2
0.925 0.699 -2.561 0.613 0.493 -2.609 -1.384 0.214 922.4
0.975 0.437 -2.635 0.988 0.226 -2.662 -1.486 0.336 1000.0

sp5.2 ; ω=10.43◦

x3/B K1 K2 KIII K̂1 K̂2 ψ̂ φ Gic

(MPa
√
m ·m−iε) (MPa

√
m) (MPa

√
m) (rad) (rad) (N/m)

0.025 0.468 -2.842 -1.053 0.240 -2.870 -1.487 -0.332 1159.5
0.075 0.750 -2.765 -0.652 0.528 -2.816 -1.386 -0.211 1072.7
0.125 0.805 -2.767 -0.483 0.582 -2.822 -1.368 -0.157 1063.3
0.175 0.820 -2.770 -0.379 0.597 -2.827 -1.363 -0.123 1058.8
0.225 0.825 -2.773 -0.300 0.602 -2.830 -1.361 -0.098 1055.7
0.275 0.826 -2.775 -0.234 0.603 -2.831 -1.361 -0.076 1053.1
0.325 0.826 -2.776 -0.176 0.603 -2.833 -1.361 -0.057 1051.1
0.375 0.825 -2.776 -0.122 0.602 -2.833 -1.362 -0.040 1049.7
0.425 0.825 -2.777 -0.072 0.601 -2.834 -1.362 -0.024 1048.8
0.475 0.824 -2.777 -0.024 0.601 -2.834 -1.362 -0.008 1048.3
0.525 0.824 -2.777 0.024 0.601 -2.834 -1.362 0.008 1048.3
0.575 0.825 -2.777 0.072 0.601 -2.834 -1.362 0.024 1048.8
0.625 0.825 -2.776 0.122 0.602 -2.833 -1.362 0.040 1049.7
0.675 0.826 -2.776 0.176 0.603 -2.833 -1.361 0.057 1051.1
0.725 0.826 -2.775 0.234 0.603 -2.831 -1.361 0.076 1053.1
0.775 0.825 -2.773 0.300 0.602 -2.830 -1.361 0.098 1055.7
0.825 0.820 -2.770 0.379 0.597 -2.827 -1.363 0.123 1058.8
0.875 0.805 -2.767 0.483 0.582 -2.822 -1.368 0.157 1063.3
0.925 0.750 -2.765 0.652 0.528 -2.816 -1.386 0.211 1072.7
0.975 0.468 -2.842 1.053 0.240 -2.870 -1.487 0.332 1159.1
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Beam-type specimens: additional

data

In this appendix, the values measured for the upper and lower sub-laminates of the beam-

type specimens described in Section 5.1.1 and as illustrated in Fig. 5.3b are presented in

Tables G.1 and G.2, respectively. In addition, their scaled values, calculated by means of

eqs. (5.1)1 and (5.1)2, are presented in Tables G.3 and G.4, respectively.

Table G.1: Measured values of the upper sub-laminate height hT of the beam-type spec-
imens.

specimen no. hT1 hT2 hT3 hT4 hT5 hT STD

(mm) (mm) (mm) (mm) (mm) (mm) (mm)

DCB-7-1.1 2.25 2.22 2.25 2.26 2.22 2.24 0.01

DCB-7-1.2 2.31 2.29 2.26 2.24 - 2.27 0.02

DCB-7-1.3 2.26 2.27 2.23 2.26 2.25 2.25 0.01

MMELS-7-1.5 2.25 2.22 2.23 2.24 2.26 2.24 0.01

MMELS-7-1.7 2.27 2.24 2.29 2.24 2.23 2.25 0.02

MMELS-7-1.9 2.24 2.24 2.23 2.22 2.25 2.24 0.01

C-ELS-7-1.10 2.23 2.25 2.23 2.24 2.22 2.23 0.01

C-ELS-7-1.11 2.25 2.23 2.26 2.22 2.24 2.24 0.01

C-ELS-7-1.12 2.22 2.22 2.25 2.22 2.21 2.22 0.01

C-ELS-7-1.13 2.28 2.30 2.25 2.29 2.26 2.28 0.02

C-ELS-7-1.14 2.24 2.24 2.22 2.22 2.20 2.22 0.01

MMELS-7-1.17 2.26 2.22 2.25 2.21 2.25 2.23 0.02

MMELS-7-1.18 2.19 2.20 2.21 2.18 2.20 2.20 0.01
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Table G.2: Measured values of the lower sub-laminate height hB of the beam-type speci-
mens.

specimen no. hB1 hB2 hB3 hB4 hB5 hB STD

(mm) (mm) (mm) (mm) (mm) (mm) (mm)

DCB-7-1.1 2.71 2.71 2.71 2.73 2.71 2.71 0.01

DCB-7-1.2 2.74 2.77 2.77 2.77 - 2.76 0.01

DCB-7-1.3 2.71 2.74 2.75 2.74 2.73 2.73 0.01

MMELS-7-1.5 2.70 2.72 2.70 2.71 2.73 2.71 0.01

MMELS-7-1.7 2.74 2.76 2.75 2.69 2.71 2.73 0.03

MMELS-7-1.9 2.65 2.71 2.70 2.69 2.69 2.69 0.02

C-ELS-7-1.10 2.69 2.74 2.69 2.69 2.70 2.70 0.02

C-ELS-7-1.11 2.71 2.72 2.73 2.72 2.72 2.72 0.01

C-ELS-7-1.12 2.70 2.71 2.70 2.72 2.69 2.71 0.01

C-ELS-7-1.13 2.74 2.75 2.76 2.76 2.74 2.75 0.01

C-ELS-7-1.14 2.71 2.75 2.74 2.74 2.71 2.73 0.02

MMELS-7-1.17 2.70 2.74 2.74 2.72 2.71 2.72 0.01

MMELS-7-1.18 2.69 2.71 2.70 2.72 2.70 2.71 0.01

Table G.3: Scaled values for the upper sub-laminate height h
(sc)
T of the beam-type speci-

mens, calculated by means of eq. (5.1)1.

specimen no. h
(sc)
T1 h

(sc)
T2 h

(sc)
T3 h

(sc)
T4 h

(sc)
T5 h

(sc)

T STD

(mm) (mm) (mm) (mm) (mm) (mm) (mm)

DCB-7-1.1 2.26 2.24 2.27 2.27 2.24 2.26 0.01

DCB-7-1.2 2.31 2.30 2.27 2.25 - 2.28 0.02

DCB-7-1.3 2.29 2.29 2.26 2.29 2.28 2.28 0.01

MMELS-7-1.5 2.28 2.25 2.26 2.27 2.29 2.27 0.01

MMELS-7-1.7 2.26 2.24 2.29 2.23 2.22 2.25 0.02

MMELS-7-1.9 2.25 2.25 2.25 2.24 2.27 2.25 0.01

C-ELS-7-1.10 2.24 2.26 2.24 2.25 2.23 2.24 0.01

C-ELS-7-1.11 2.26 2.24 2.27 2.23 2.24 2.25 0.01

C-ELS-7-1.12 2.24 2.24 2.27 2.24 2.23 2.24 0.01

C-ELS-7-1.13 2.26 2.28 2.23 2.27 2.24 2.26 0.02

C-ELS-7-1.14 2.25 2.25 2.23 2.22 2.21 2.23 0.01

MMELS-7-1.17 2.25 2.21 2.24 2.20 2.24 2.23 0.02

MMELS-7-1.18 2.22 2.23 2.24 2.21 2.23 2.23 0.01
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Table G.4: Scaled values for the lower sub-laminate height h
(sc)
B of the beam-type speci-

mens, calculated by means of eq. (5.1)2.

specimen no. h
(sc)
B1 h

(sc)
B2 h

(sc)
B3 h

(sc)
B4 h

(sc)
B5 h

(sc)

B STD

(mm) (mm) (mm) (mm) (mm) (mm) (mm)

DCB-7-1.1 2.72 2.73 2.72 2.75 2.73 2.73 0.01

DCB-7-1.2 2.75 2.78 2.79 2.78 - 2.77 0.01

DCB-7-1.3 2.75 2.78 2.78 2.77 2.77 2.77 0.01

MMELS-7-1.5 2.74 2.76 2.74 2.75 2.77 2.75 0.01

MMELS-7-1.7 2.73 2.75 2.74 2.68 2.71 2.72 0.03

MMELS-7-1.9 2.67 2.73 2.72 2.7 2.71 2.71 0.02

C-ELS-7-1.10 2.70 2.75 2.70 2.70 2.71 2.71 0.02

C-ELS-7-1.11 2.71 2.73 2.73 2.73 2.73 2.73 0.01

C-ELS-7-1.12 2.72 2.73 2.73 2.74 2.72 2.73 0.01

C-ELS-7-1.13 2.72 2.73 2.73 2.73 2.71 2.72 0.01

C-ELS-7-1.14 2.73 2.76 2.75 2.75 2.72 2.74 0.02

MMELS-7-1.17 2.70 2.73 2.73 2.71 2.70 2.71 0.01

MMELS-7-1.18 2.73 2.75 2.74 2.76 2.74 2.74 0.01
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The delamination propagation data of specimens DCB-7-1.1, DCB-7-1.2 and DCB-7-1.3

is presented in Tables G.5, G.6 and G.7, respectively, for visually detected and evaluated

delamination lengths. The values of the power law fitting parameters of eq. (5.4), g

and C0, as well as the coefficient of determination R2, used in the determination of the

relationship between the specimen compliance and delamination length are presented for

each DCB specimen in the captions. In each of these tables, the calculated values of Gi
referred to as GIR, which were obtained by means of the FE method, are presented for

both experimentally detected and evaluated delamination lengths of the corresponding

DCB specimen.

Table G.5: Delamination propagation parameters for specimen DCB-7-1.1: visually

detected and calculated by means of eq. (5.4) with g = 115.66 (N ·mm2)
1/3

, C0 =
6.23 · 10−3 mm/N and R2 = 0.998.

a (mm) ∆a (mm) C (mm/N) P (N) image no. delamination details GIR (N/m)

50.54 0.0 0.085 53.6 546 visually detected 322.3

51.44 0.9 0.092 58.6 1259 visually detected 398.2

55.54 5.0 0.119 69.8 1507 visually detected 652.4

56.14 5.6 0.121 69.8 1512 calculated 632.4

59.24 8.7 0.155 70.5 1738 visually detected 750.4

64.81 14.3 0.182 66.4 1824 calculated 748.7

66.02 15.5 0.192 60.0 1934 calculated 633.6

68.45 17.9 0.214 62.3 2079 calculated 730.3

74.34 23.8 0.282 55.6 2326 visually detected 717.0

78.04 27.5 0.300 52.0 2487 visually detected 688.5

82.54 32.0 0.358 49.7 2702 visually detected 698.9

85.14 34.6 0.409 48.6 2838 visually detected 708.0

88.58 38.0 0.455 47.5 3074 calculated 692.8

89.88 39.4 0.476 44.9 3276 calculated 637.8

96.99 46.5 0.596 44.7 3664 calculated 730.9

97.83 47.3 0.611 41.9 3847 calculated 654.5

103.37 52.8 0.720 40.7 4100 calculated 686.4

104.54 54.0 0.748 40.8 4105 visually detected 743.4

106.63 56.1 0.790 40.0 4481 calculated 703.0
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Table G.6: Delamination propagation parameters for specimen DCB-7-1.2: visually

detected and calculated by means of eq. (5.4) with g = 120.95 (N ·mm2)
1/3

, C0 =
1.37 · 10−2 mm/N and R2 = 0.998.

a (mm) ∆a (mm) C (mm/N) P (N) image no. delamination details GIR (N/m)

51.52 0.0 0.086 63.0 651 visually detected 445.1

52.32 0.8 0.097 62.0 1447 visually detected 444.4

59.46 7.9 0.132 67.2 1635 calculated 629.3

61.92 10.4 0.148 67.3 1708 calculated 679.8

63.90 12.4 0.161 67.2 1942 calculated 719.3

66.02 14.5 0.188 65.0 2116 visually detected 753.6

69.46 17.9 0.203 66.8 2160 calculated 833.9

73.19 21.7 0.235 60.8 2299 calculated 762.7

74.32 22.8 0.260 62.0 2608 visually detected 857.4

79.32 27.8 0.293 52.3 2670 visually detected 689.4

84.52 33.0 0.335 48.8 2944 visually detected 678.2

85.94 34.4 0.372 50.9 3023 calculated 724.8

88.78 37.3 0.409 50.5 3207 calculated 758.2

95.91 44.4 0.512 48.2 3481 calculated 801.6

97.52 46.0 0.529 44.6 3802 visually detected 742.8

107.16 55.6 0.709 42.3 4222 calculated 763.8

109.52 58.0 0.766 38.0 4416 visually detected 674.9

111.25 59.7 0.792 38.9 4465 calculated 693.5

Table G.7: Delamination propagation parameters for specimen DCB-7-1.3: visually

detected and calculated by means of eq. (5.4) with g = 118.83 (N ·mm2)
1/3

, C0 =
2.62 · 10−2 mm/N and R2 = 0.994.

a (mm) ∆a (mm) C (mm/N) P (N) image no. delamination details GIR (N/m)

50.73 0.0 0.086 56.7 600 visually detected 361.5

53.38 0.7 0.107 65.9 1906 calculated 466.0

59.73 9.0 0.156 66.5 2120 visually detected 672.9

64.33 13.6 0.179 62.3 2274 visually detected 680.7

67.53 16.8 0.234 58.6 2423 visually detected 658.5

72.62 21.9 0.254 58.6 2571 calculated 704.3

73.03 22.3 0.261 55.3 2708 visually detected 681.8

74.13 23.4 0.269 55.6 2724 calculated 661.2

76.69 26.0 0.295 53.2 2799 calculated 643.8

79.99 29.3 0.331 51.3 2930 calculated 650.1

83.47 32.7 0.373 48.7 3065 calculated 634.6

84.23 33.5 0.380 49.0 3217 visually detected 702.4

85.37 34.6 0.397 50.4 3294 calculated 710.4

86.64 35.9 0.414 50.1 3470 calculated 720.9

95.06 44.3 0.538 43.0 3702 calculated 635.6

98.23 47.5 0.587 43.6 4048 visually detected 745.7

105.76 55.0 0.731 42.5 4487 calculated 762.0
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The delamination propagation data of specimens C-ELS-7-1.10 through C-ELS-7-1.14 is

presented in Tables G.8 to G.12 for visually detected delamination lengths. The values of

the power law fitting parameters of eq. (5.4), g and C0, as well as the coefficient of determi-

nation R2, used in the determination of the relationship between the specimen compliance

and delamination length are presented for each C-ELS specimen in the captions. In each

of these tables, the calculated values of Gi referred to as GIIR, which were obtained by

means of the FE method, are presented for experimentally detected delamination lengths

of the corresponding C-ELS specimen.

Table G.8: Delamination propagation parameters for specimen C-ELS-7-1.10: visually

detected by means of eq. (5.4) with g = 206.36 (N ·mm2)
1/3

, C0 = 2.95 · 10−2 mm/N and
R2 = 0.993.

a (mm) ∆a (mm) C (mm/N) P (N) image no. delamination details PFEA (N) GIIR (N/m)

50.44 0.0 0.0340 239.9 966 visually detected 243.2 1239.4

53.74 3.3 0.0482 260.0 2970 visually detected 259.9 1558.1

54.34 3.9 0.0485 269.8 3198 visually detected 267.7 1686.9

55.94 5.5 0.0502 294.1 3511 visually detected 295.4 2143.6

56.44 6.0 0.0512 300.0 3659 visually detected 305.0 2319.9

59.24 8.8 0.0532 298.7 3796 visually detected 299.8 2434.1

60.44 10.0 0.0544 300.2 3911 visually detected 301.8 2552.4

61.94 11.5 0.0565 289.9 3936 visually detected 294.2 2537.7

63.94 13.5 0.0580 282.1 3939 visually detected 281.9 2473.4

65.94 15.5 0.0629 260.2 3976 visually detected 272.4 2444.0

66.04 15.6 0.0630 261.1 4001 visually detected 273.5 2469.0

68.44 18.0 0.0659 256.4 4126 visually detected 267.8 2524.0

70.64 20.2 0.0686 248.8 4184 visually detected 258.5 2494.0

72.94 22.5 0.0731 241.3 4352 visually detected 255.9 2584.2
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Table G.9: Delamination propagation parameters for specimen C-ELS-7-1.11: visually

detected by means of eq. (5.4) with g = 217.32 (N ·mm2)
1/3

, C0 = 3.13 · 10−2 mm/N and
R2 = 0.995.

a (mm) ∆a (mm) C (mm/N) P (N) image no. delamination details PFEA (N) GIIR (N/m)

50.12 0.0 0.0317 207.1 782 visually detected 204.2 845.5

52.09 1.96 0.0451 251.0 2687 visually detected 251.4 1347.5

53.93 3.8 0.0465 278.5 3065 visually detected 276.4 1730.8

54.73 4.6 0.0471 302.2 3375 visually detected 300.8 2089.3

55.13 5.0 0.0477 311.5 3531 visually detected 312.9 2282.1

59.43 9.3 0.0515 293.7 3611 visually detected 293.0 2291.8

59.63 9.5 0.0517 294.7 3639 visually detected 294.0 2323.4

63.33 13.2 0.0563 283.3 3832 visually detected 286.3 2453.8

64.13 14.0 0.0575 279.2 3860 visually detected 283.7 2460.4

67.43 17.3 0.0622 259.0 3898 visually detected 266.2 2377.7

69.13 19.0 0.0630 256.8 3915 visually detected 257.3 2326.5

70.13 20.0 0.0639 255.1 3952 visually detected 253.7 2322.7

71.13 21.0 0.0668 244.8 3977 visually detected 249.7 2308.6

71.93 21.8 0.0693 237.2 4007 visually detected 247.1 2308.4

Table G.10: Delamination propagation parameters for specimen C-ELS-7-1.12: visually

detected by means of eq. (5.4) with g = 219.38 (N ·mm2)
1/3

, C0 = 3.24 · 10−2 mm/N and
R2 = 0.993.

a (mm) ∆a (mm) C (mm/N) P (N) image no. delamination details PFEA (N) GIIR (N/m)

50.04 0 0.0321 189.2 1791 visually detected 181.1 681.1

53.04 3.0 0.0478 248.4 2838 visually detected 251.2 1417.1

57.04 7.0 0.0492 289.7 3409 visually detected 279.0 1984.9

57.54 7.5 0.0500 300.6 3602 visually detected 292.8 2210.5

57.74 7.7 0.0504 309.0 3733 visually detected 302.9 2371.7

58.44 8.4 0.0505 309.0 3739 visually detected 298.9 2360.9

59.84 9.8 0.0523 302.3 3792 visually detected 294.6 2392.4

61.04 11.0 0.0542 292.5 3810 visually detected 288.6 2381.2

63.34 13.3 0.0558 291.7 3923 visually detected 283.4 2453.2

67.04 17.0 0.0618 273.5 4088 visually detected 272.9 2519.9

68.04 18.0 0.0626 270.1 4094 visually detected 267.5 2488.1

68.34 18.3 0.0634 267.9 4117 visually detected 267.0 2499.1

70.54 20.5 0.0655 261.5 4162 visually detected 257.0 2454.8

71.04 21.0 0.0673 256.9 4205 visually detected 256.9 2484.3

72.84 22.8 0.0684 255.3 4252 visually detected 249.4 2451.0
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Table G.11: Delamination propagation parameters for specimen C-ELS-7-1.13: visually

detected by means of eq. (5.4) with g = 214.47 (N ·mm2)
1/3

, C0 = 3.26 · 10−2 mm/N and
R2 = 0.996.

a (mm) ∆a (mm) C (mm/N) P (N) image no. delamination details PFEA (N) GIIR (N/m)

49.66 0.0 0.0315 227.3 838 visually detected 225.7 1009.2

54.72 5.07 0.0491 259.5 3020 visually detected 257.4 1529.2

55.66 6.0 0.0503 279.5 3323 visually detected 278.2 1837.2

56.66 7.0 0.0515 305.6 3730 visually detected 308.1 2302.6

58.86 9.2 0.0527 298.3 3736 visually detected 295.2 2267.9

58.96 9.3 0.0541 293.3 3782 visually detected 298.6 2323.7

60.16 10.5 0.0549 297.1 3887 visually detected 300.0 2429.0

64.66 15.0 0.0591 279.0 3957 visually detected 278.2 2384.8

66.66 17.0 0.0625 269.7 4059 visually detected 273.8 2439.7

70.06 20.4 0.0662 260.2 4169 visually detected 261.5 2438.2

70.66 21.0 0.0690 249.4 4176 visually detected 258.5 2421.1

73.46 23.8 0.0727 236.5 4194 visually detected 244.0 2320.7

73.66 24.0 0.0740 232.0 4195 visually detected 242.9 2311.6

74.66 25.0 0.0751 228.5 4198 visually detected 237.7 2270.6

Table G.12: Delamination propagation parameters for specimen C-ELS-7-1.14: visually

detected by means of eq. (5.4) with g = 218.44 (N ·mm2)
1/3

, C0 = 2.98 · 10−2 mm/N and
R2 = 0.997.

a (mm) ∆a (mm) C (mm/N) P (N) image no. delamination details PFEA (N) GIIR (N/m)

49.47 0.0 0.0295 196.3 1032 visually detected 183.0 670.2

51.06 1.59 0.0419 237.2 3527 visually detected 226.6 1077.4

52.47 3.0 0.0438 263.6 4100 visually detected 257.1 1444.2

53.47 4.0 0.0441 270.1 4228 visually detected 260.1 1526.0

53.97 4.5 0.0444 274.1 4324 visually detected 263.5 1591.1

54.17 4.7 0.0447 276.6 4395 visually detected 266.8 1640.3

55.37 5.9 0.0463 298.6 4935 visually detected 293.3 2050.4

55.47 6.0 0.0468 300.1 5019 visually detected 298.6 2119.0

56.47 7.0 0.0472 300.2 5062 visually detected 294.7 2136.2

57.27 7.8 0.0479 298.0 5110 visually detected 292.9 2162.3

59.87 10.4 0.0505 286.3 5193 visually detected 281.5 2166.5

60.77 11.3 0.0515 280.9 5203 visually detected 276.6 2150.1

63.27 13.8 0.0537 269.6 5221 visually detected 262.5 2086.3

64.47 15.0 0.0557 264.5 5331 visually detected 261.2 2135.7

67.67 18.2 0.0588 260.1 5551 visually detected 253.3 2191.8

67.97 18.5 0.0599 256.4 5582 visually detected 253.4 2205.2

69.87 20.4 0.0629 245.8 5643 visually detected 256.1 2256.3

70.27 20.8 0.0632 244.7 5649 visually detected 243.2 2168.5

71.47 22.0 0.0662 233.8 5670 visually detected 237.2 2125.3
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The delamination propagation data of specimens MMELS-7-1.5, MMELS-7-1.7, MMELS-

7-1.9, MMELS-7-1.17 and MMELS-7-1.18 is presented in Tables G.13 to G.17 for visually

detected and evaluated delamination lengths. The values of the power law fitting pa-

rameters of eq. (5.4), g and C0, as well as the coefficient of determination R2, used in

the determination of the relationship between the specimen compliance and delamina-

tion length are presented for each MMELS specimen in the captions. In each of these

tables, the calculated values of Gi, referred to as GiR, which were obtained by means of the

FE method, are also presented. These values are actually the global fracture resistance,

average through the thickness, values for the experimentally obtained failure loads.

Table G.13: Delamination propagation parameters for specimen MMELS-7-1.5: visually

detected by means of eq. (5.4) with g = 146.66 (N ·mm2)
1/3

, C0 = 4.10 · 10−2 mm/N and
R2 = 0.998.

a (mm) ∆a (mm) C (mm/N) P (N) image no. delamination details GiR (N/m)

50.50 0.0 0.079 78.5 2234 visually detected 353.8

54.05 3.55 0.091 99.5 3105 visually detected 646.6

55.20 4.70 0.096 103.9 3467 visually detected 734.6

59.50 9.00 0.106 98.6 3665 visually detected 762.0

62.50 12.00 0.123 94.0 4020 visually detected 761.7

69.25 18.75 0.147 83.3 4291 visually detected 726.8

71.75 21.25 0.159 86.6 4870 visually detected 841.7

76.15 25.65 0.178 83.7 5263 visually detected 881.4

80.25 29.75 0.202 80.8 5744 visually detected 909.1

83.75 33.25 0.229 76.2 6161 visually detected 878.7

88.50 38.00 0.261 70.3 6489 visually detected 831.3
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Table G.14: Delamination propagation parameters for specimen MMELS-7-1.7: visually

detected by means of eq. (5.4) with g = 147.04 (N ·mm2)
1/3

, C0 = 4.36 · 10−2 mm/N and
R2 = 0.997.

a (mm) ∆a (mm) C (mm/N) P (N) image no. delamination details GiR (N/m)

51.20 0.0 0.082 79.9 2350 visually detected 385.9

54.95 3.75 0.094 92.3 3000 visually detected 589.8

56.50 5.30 0.099 106.9 3721 visually detected 833.1

62.20 11.00 0.120 93.8 3958 visually detected 771.5

66.20 15.00 0.139 91.5 4470 visually detected 827.3

70.20 19.00 0.157 88.1 4872 visually detected 858.4

75.45 24.25 0.18 82.1 5215 visually detected 856.0

79.04 27.84 0.202 79.2 5654 visually detected 871.5

82.74 31.54 0.230 74.6 6080 visually detected 845.5

84.74 33.54 0.231 76.9 6291 visually detected 940.8

87.74 36.54 0.257 73.4 6697 visually detected 915.9

88.24 37.04 0.258 73.9 6837 visually detected 938.3

Table G.15: Delamination propagation parameters for specimen MMELS-7-1.9: visually

detected and calculated by means of eq. (5.4) with g = 148.96 (N ·mm2)
1/3

, C0 = 4.05 ·
10−2 mm/N and R2 = 0.999.

a (mm) ∆a (mm) C (mm/N) P (N) image no. delamination details GiR (N/m)

50.69 0.0 0.083 80.8 1216 visually detected 388.5

54.29 3.60 0.086 99.8 1546 visually detected 675.4

57.79 7.10 0.100 106.8 1871 visually detected 871.4

62.49 11.80 0.115 96.7 1992 visually detected 829.2

64.69 14.00 0.119 97.8 2092 visually detected 905.0

67.59 16.90 0.134 91.5 2200 evaluated 861.5

69.90 19.21 0.144 88.7 2296 evaluated 863.7

71.49 20.80 0.152 88.3 2415 visually detected 894.1

76.16 25.46 0.174 81.5 2553 evaluated 860.8

76.24 25.54 0.175 83.4 2621 evaluated 903.4

79.69 29.00 0.195 77.7 2715 visually detected 853.8

82.69 32.00 0.213 74.6 2850 visually detected 843.4

85.69 35.00 0.231 70.9 2941 visually detected 817.5

86.89 36.20 0.238 71.5 3056 visually detected 854.1

89.69 39.00 0.258 68.4 3178 visually detected 831.2
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Table G.16: Delamination propagation parameters for specimen MMELS-7-1.17: visually

detected and calculated by means of eq. (5.4) with g = 146.01 (N ·mm2)
1/3

, C0 = 4.48 ·
10−2 mm/N and R2 = 0.999.

a (mm) ∆a (mm) C (mm/N) P (N) image no. delamination details GiR (N/m)

51.20 0.0 0.085 79.1 2439 visually detected 392.5

52.10 0.90 0.089 93.8 2850 visually detected 569.7

52.60 1.40 0.090 112 3508 visually detected 827.2

54.90 3.70 0.097 106.5 3587 visually detected 811.5

60.70 9.50 0.118 101.2 4165 visually detected 887.4

67.95 16.75 0.149 83.0 4288 visually detected 740.3

68.20 17.00 0.147 87.4 4525 visually detected 827.0

71.95 20.75 0.165 80.6 4650 visually detected 780.2

72.05 20.85 0.167 82.3 4802 visually detected 815.0

76.45 25.25 0.189 75.9 5024 visually detected 778.1

76.95 25.75 0.191 78.2 5241 visually detected 836.6

77.60 26.40 0.197 77.5 5351 visually detected 833.4

80.50 29.30 0.212 77.3 5760 evaluated 890.4

84.30 33.10 0.234 75.6 6224 visually detected 930.9

87.73 36.53 0.262 69.3 6358 evaluated 845.2

89.35 38.15 0.273 67.8 6493 visually detected 840.0

Table G.17: Delamination propagation parameters for specimen MMELS-7-1.18: visually

detected by means of eq. (5.4) with g = 144.91 (N ·mm2)
1/3

, C0 = 4.16 · 10−2 mm/N and
R2 = 0.999.

a (mm) ∆a (mm) C (mm/N) P (N) image no. delamination details GiR (N/m)

51.22 0.0 0.086 84.2 2615 visually detected 445.6

54.27 3.05 0.093 93.8 2860 visually detected 616.8

59.22 8.00 0.108 96.7 3642 visually detected 773.9

59.57 8.35 0.109 98.4 3732 visually detected 810.7

60.57 9.35 0.115 95.7 3835 visually detected 792.0

63.87 12.65 0.128 91.5 4098 visually detected 802.0

63.97 12.75 0.128 93.1 4176 visually detected 832.9

64.32 13.10 0.128 94.3 4236 visually detected 863.5

69.92 18.70 0.156 80.8 4425 visually detected 743.0

72.32 21.10 0.166 78.7 4600 visually detected 751.9

76.17 24.95 0.191 75.0 4889 visually detected 754.8

76.82 25.60 0.191 78.2 5256 visually detected 833.8

80.57 29.35 0.216 71.1 5439 visually detected 757.2

80.72 29.50 0.216 73.8 5614 visually detected 818.9

84.27 33.05 0.24 67.9 5810 visually detected 752.0

88.07 36.85 0.264 65.1 6128 visually detected 754.3

88.32 37.10 0.267 66.7 6240 visually detected 796.3

88.97 37.75 0.271 67.2 6429 visually detected 818.3



הדגמים. בנוסף, נקבעים גם ערכי  , לכל אחת מתצורות𝒢𝑖𝑅ה ההתנגדות להתקדמות ההפרד

 .𝒢𝑖𝑠𝑠ולהתקדמות הפרדה במצב יציב  𝒢𝑖𝑐החסינות לשבר 

כל דגמי תחול שבר בשהתקבלו עבור א 𝒢𝑖𝑐שחרור האנרגיה הקריטיים קצב הצגה כמותית של ערכי 

מיושם  beam-typeמישורי. עבור דגמי תוך הניסויים השונים, מופיעה כתלות במוד העירוב ה

בשתי תצורות . Benzeggagh and Kenane (1996)י קריטריון כשל אמפירי, כפי שהוצע על יד

ערכו של  ,0-מתקרב ל �̂�כי ככל שערך מוד העירוב התוך מישורי  (, ניכרbeam-type-ו BDהדגמים )

𝒢𝑖𝑐 הערך של נמצא כי . עם זאת, קטן𝒢𝑖𝑐  עבור�̂� =  מסתמןלפיכך,  רגיש לעובי של דגם הניסוי. 0

של דגם  וכתיב עוביצריך לההעובי של האלמנט המבני הנבחן  ,I-מודכי עבור דפורמציה בכמעט 

 הניסוי.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 תקציר

, כדוגמת חוזק וקשיחות גבוהים עם משקל נמוך, תנגודת גבוהה מרוכביםחומרים יתרונותיהם של 

לאטרקטיביים ומועדפים לשימוש, בפרט בתעשיית התעופה.  אותםהופכים  לקורוזיה ולהתעייפות,

עם זאת, מבנים מחומרים מרוכבים רגישים להמצאות פגמים כדוגמת הפרדות )דלמינציות(, 

שמהוות אחד מאופני הכשל הטיפוסיים בליווחי חומרים מרוכבים. הפרדה בין שכבות יכולה 

 להווצר במהלך תהליך הייצור או כתוצאה מפגיעה לא מכוונת לאחר הייצור. הבעיה המרכזית

המחסור במידע מדוייק  הנה הקושי הרב באיתור ומעקב אחר פגמים. במבנים מחומרים מרוכבים

ערכי החסינות לשבר, להתעייפות כדוגמת  כת התקדמות הנזק בתוך המבנה,המאפשר הער ואמין

למרווחי בטחון  מסתכם בתכנון יתר ובמשקל עודף של המבנה עקב דרישות הרגולציהוסבולת נזק, 

הממוקם , I/II)אתחול והתקדמות( במוד מעורב  טוב יותר התנהגות שבר גבוהים. כדי להבין

-ו 0◦90/◦ כיווניםב פחמן   אפוקסי וסיבי  העשויים מטריצת  רייםמישושני אריגים    בין בממשק 

 נעשה מחקר מקיף הכולל פיתוחים אנליטיים, אנליזות נומריות וביצוע ניסויים. , 45+◦/-45◦

פיתוח אנליטי להרחבת ביטוי האיבר הראשון בטור האסימפטוטי של שדות המאמצים והזזות 

 .Stroh (1958) -וLekhnitskii (1950)  בשיטות תוך שימוש מבוצעבקרבת קצה ההפרדה הנחקרת 

המרוכב מקדם עוצמת המאמץ  באמצעותמישוריים מתוארים -תוךוההזזות ה ות המאמציםשד

מקדם עוצמת מישוריים מתוארים באמצעות -שדות המאמצים וההזזות החוץ ; )קומפלקסי(

לאחר מכן בשתי שיטות נפרדות, אקסטרפולציית  מיושמיםהביטויים שפותחו  .ממשי ההמאמץ 

 המשמר, המשמשות לחישוב מקדמי עוצמת המאמץ. M-ואינטגרל (DE)ההזזות 

אנליזות אלמנטים  מבוצע באמצעותחישוב מקדמי עוצמת המאמץ עבור כל אחד מדגמי הניסוי 

יעת קצב קבב יםשמשמ יםחושב; מקדמי עוצמת המאמץ המDEו/או  M-סופיים ושימוש באינטגרל

התוכנה  ושתי זוויות הפאזה )עירוב המודים(. )חסינות לשבר(בממשק שחרור האנרגיה הקריטי 

, כמו גם הביטוי לאיבר הראשון בטור האסימפטוטי של שדות DE-ו M-שנכתבה עבור אינטגרל

ושתי השיטות על ידי ביצוע אנליזה נומרית לשלושה מקרי בוחן,  דקים, נבהמאמצים והזזות

השוואת מביצוע  מתקבלתשל ערכי מקדמי עוצמת המאמץ  . התאמה מצויינתקבילות תנמצאו

נבחנים ( לאלו המדוייקים )פתרון אנליטי(. כמו כן, DE-ו M-הערכים המחושבים )אינטגרל

 התכנסות הפתרון ואי התלות במסלול האינטגרציה.ם אומתיומ

בעל ליווח רב כיווני,  (BD)אית בדגם דיסקה ברזילמבוצעים ניסויי חסינות לשבר במוד מעורב 

פותח קריטריון מטווח רחב של עירוב מודים.  השיגעומס שונות במטרה לפרדה, בזוויות ההמכיל 

כדי לכלול בתוצאות הניסוייות והנומריות בשבר.  שימושמימדית, תוך -לכשל במתכונת דו ותלת

לכשל בלתי צפוי ברמת התכנות  10%אנליזה סטטיסטית עם  מבוצעתבתוצאות,  הקיים הפיזור

. ניתן להשתמש בקריטריוני כשל אלו, עבור הממשק מושא המחקר, לטובת תכן בטוח 95%סמך של 

 יותר. 

בשלושה דגמי  סטטי מבוצעים-תחת עומס קוואזיהפרדה הוהתקדמות  שבראתחול  חסינות לניסויי 

beam-type :DCB, C-ELS ו-MMELSהדפורמציות הנשקלות הנן כמעט מוד .-Iכמעט מוד ,-II 

ויחס אחד של מוד מעורב, בהתאמה. בהתבסס על התוצאות הניסוייות והנומריות, מיוצרת עקומת 
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